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ABSTRACT

Simple process models and complex climatemodels are remarkably sensitive to the time scale of convective

adjustment t, but this parameter remains poorly constrained and understood. This study uses the linear-range

slope of a semiempirical relationship between precipitation and a lower-free-tropospheric buoyancy measure

BL. TheBLmeasure is a function of layer-averagedmoist enthalpy in the boundary layer (150-hPa-thick layer

above surface), and temperature and moisture in the lower free troposphere (boundary layer top to 500 hPa).

Sensitivity parameters with units of time quantify the BL response to its component perturbations. In moist

enthalpy units, BL is more sensitive to temperature than equivalent moisture perturbations. However,

column-integrated moist static energy conservation ensures that temperature and moisture are equally al-

tered during the adjustment process. Multiple adjusted states with different temperature–moisture combi-

nations exist; theBL sensitivity parameters govern the relationship between adjusted states, and also combine

to yield a time scale of convective adjustment ;2 h. This value is comparable to t values used in cumulus

parameterization closures. Disparities in previously reported values of t are attributed to the neglect of the

temperature contribution to precipitation, and to averaging operations that include data from both precipi-

tating and nonprecipitating regimes. A stochastic model of tropical convection demonstrates how either

averaging operations or neglected environmental influences on precipitation can yield t estimates longer than

the true t value built into the model. The analysis here culminates in construction of a precipitation closure

with both moisture and temperature adjustment (q–T closure), suitable for use in both linearized and non-

linear, intermediate-complexity models.

1. Introduction

Interactions between moist convection and its envi-

ronment shape tropical climate, but remain challenging

to understand and parameterize. The adjustment-based

convective scheme (Manabe and Strickler 1964;Manabe

et al. 1965) represents an early attempt to tackle this

issue. In this scheme, parameterized moist convection

adjusts the gridscale environment by instantaneously

consuming super moist adiabatic lapse rates and super-

saturation water vapor content. Betts (1986) and Betts

and Miller (1986) modified this scheme, replacing instan-

taneous adjustment with delayed or ‘‘soft’’ adjustment,

and replacing strict moist adiabatic and saturation profiles

with empirical reference profiles. In Betts–Miller (BM)

type schemes, a single time scale, t governs the rate at

which gridscale temperature and moisture profiles are

relaxed to target profiles, and the adjustment process

conveniently subsumes the intricacies of subgrid-scale

dynamics.

Mass-flux-based convective schemes (Arakawa and

Schubert 1974) surpass the simple BM-type schemes in

complexity, but retain a key role for convective adjust-

ment. Specifically, the closures inmass-flux-based schemes

are adjustment based, resting upon the convective quasi-

equilibrium (QE) hypothesis: convection, as an ensemble,

consumes available potential energy (APE): a measure

of vertically integrated buoyancy. In strict QE, the rate

of consumption is assumed to occur far quicker than the

rate at which APE is replenished, yielding near-zeroCorresponding author: Fiaz Ahmed, fiaz@ucla.edu

JUNE 2020 AHMED ET AL . 2163

DOI: 10.1175/JAS-D-19-0227.1

� 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

mailto:fiaz@ucla.edu
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


APE storage. A finite APE consumption time scale al-

lows for fluctuations about the QE state. The time scale

of APE or buoyancy removal is generally taken to be

between 1 and 2h in climate models (e.g., Moorthi and

Suarez 1992; Hack 1994; Zhang and McFarlane 1995;

Kain 2004; Bechtold et al. 2008), though instances of

longer APE removal times do exist [e.g., 8h in the atmo-

sphere model version 4.0 (AM4.0) double-plume scheme;

Zhao et al. 2018]. The APE measure that convection

consumes varies across parameterization schemes; con-

vective available potential energy (CAPE) or the cloud

work function (Arakawa and Schubert 1974) are popular

choices. The precipitation field in both weather and cli-

mate models is highly sensitive to the time scale of APE

removal (Done et al. 2006; Bullock et al. 2015; Bernstein

andNeelin 2016; Qian et al. 2018). TheAPE removal time

scale in mass-flux-based schemes is expected to be re-

lated to the adjustment time scale in BM-type schemes.

However, a quantitative relationship between the two

sets of time scales has not been established.

BM-type convection schemes are widely employed

across the modeling hierarchy to understand the two-

way interaction between tropical dynamics and moist

convection in both intermediate-complexity models

(Neelin and Zeng 2000; Frierson 2007a) and toy models

(Neelin and Yu 1994; Yu and Neelin 1994; Fuchs and

Raymond 2005; Khouider and Majda 2006; Fuchs and

Raymond 2007, 2017; Boos and Storelvmo 2016;

Stechmann and Hottovy 2017; Ahmed and Neelin

2019). The BM scheme is often modified to only allow

moisture adjustment (Sobel et al. 2001; Sobel andMaloney

2012, 2013; Sukhatme 2014; Adames and Kim 2016;

Adames andMing 2018; Adames et al. 2019) when gravity

waves are assumed to adjust temperature infinitely fast

(Sobel and Bretherton 2000; Sobel et al. 2001).

The solutions in aforementioned models are quite

sensitive to the prescribed t values. For example, Frierson

(2007b) notes that the intraseasonal variability of

convectively coupled Kelvin waves (Wheeler and Kiladis

1999; Kiladis et al. 2009) increases with shorter t values

and vice versa. Similarly, Adames et al. (2019) note

that in a simple linearized model with moisture-only

adjustment, a t value of 2 versus 12 h effectively de-

cided if their resulting dispersion relationship describes a

convectively coupled Kelvin wave or a moisture mode,

which is thought to describe the Madden–Julian oscilla-

tion (Madden and Julian 1971; Zhang 2005; Adames and

Wallace 2014). Despite the sensitivity of model solutions

to this parameter, the range of t values used across

models vary from a few hours to tens of hours, to even a

few days.

Unclear physical origins contribute to the difficulties

in constraining t values. Cohen and Craig (2004) link

the convective adjustment time scale to the intercloud

gravity wave transit time. Betts (1986) links it to the

intensity of gridscale vertical velocities, and conse-

quently suggests an upper bound of t 5 2 h to prevent

gridscale saturation. Both these studies suggest an im-

plicit spatial-scale dependence for t; yet, in practice,

t values are assumed invariant with spatial scale.

Empirical estimates for t do exist and rely on the well-

known statistical relationship between precipitation and

column moisture content (Bretherton et al. 2004; Peters

andNeelin 2006;Ahmed and Schumacher 2015; Rushley

et al. 2018). Figure 1 depicts the general procedure used

to estimate an adjustment time scale from this rela-

tionship. The local slope of the curve relating precipi-

tation (usually in units of mmh21) and column moisture

content (expressible in units of mm) yields a time scale,

which is interpreted as amoisture adjustment time scale.

FIG. 1. A schematic explaining the general procedure used to estimate t from the observed (a) precipitation–

moisture relationship (Bretherton et al. 2004) and (b) precipitation–buoyancy relationship (AN18). The local slope

of the curve in each case yields an estimate for t. In (a), the strong curvature offers infinite base points (stars) around

which to estimate the local slope (red lines), leading to unconstrained t values. In (b), the strongly linear precip-

itating regime (black) is characterized by a single value (the slope), which constrains the estimated t value. In (b),

the nonlinear dashed green curve can emerge from the linear black line in two ways: averaging and from stochastic

fluctuations.
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Using this method, Bretherton et al. (2004) estimate

t 5 12h with the observed relationship between daily

precipitation and saturation fraction, and t 5 16h using

monthly averaged data. The former estimate was later

revised by Rushley et al. (2018) to lie closer to 18 h.

Sobel and Bretherton (2003) estimate t 5 2.5 days

using composited data from cloud-resolving simula-

tions. These empirical estimates are notably longer

than the Betts and Miller (1986) estimate of t 5 2 h

with sensitivity experiments in a single-column model.

One reason for this discrepancy stems from the lack of a

well-defined base point (Fig. 1a) from which to estimate

the local slope (Adames 2017), as well as differences in

the spatial and temporal scales of the datasets used to

generate the precipitation–moisture relationship. The

variable local slopes in the precipitation–moisture rela-

tionship can be incorporated within nonlinear precipita-

tion closures, but the resulting solutions imply adjustment

processes such as algebraic decay, with no characteristic

time scale for convective adjustment (Yano et al. 2000;

Neelin et al. 2009). This study will examine ways in which

variable local slopes can emerge in the precipitation–

moisture curve—even when a single underlying convec-

tive adjustment time scale exists.

Recently, Ahmed and Neelin (2018, hereafter AN18)

derived an expression that cast moisture as a buoyancy

surrogate, and posited a more general precipitation–

buoyancy relationship. Using buoyancy instead of

moisture explained the observed land–ocean differences

in the precipitation–moisture relationship (Ahmed and

Schumacher 2017; Schiro and Neelin 2019). The AN18

precipitation–buoyancy relationship exhibits a large lin-

ear range in contrast to the evident nonlinearity in the

precipitation–moisture relationship. This linear regime

allows for a single robust estimate of the adjustment time

scale (Fig. 1b). The linear regime can, however, be dis-

torted by the use of spatiotemporally averaged data or

equivalently, by effects of unaccounted influences on

precipitation. Estimates of t that rely on the slopes of

empirical relationships shown in Fig. 1 therefore contain

an implicit dependence on the temporal and spatial scale

of the underlying dataset that must be elaborated.

In this study we exploit the AN18 precipitation–

buoyancy relationship for a set of applications that

previously employed the precipitation–moisture rela-

tionship: empirically constraining t and devising an

adjustment-based precipitation closure appropriate for

intermediate-complexity models. Additionally, we also

aim to explain discrepancies in previous estimates of t,

and relate the moisture and temperature adjustment

time scales in BM-type schemes to the analogous time

scale for APE removal in mass-flux-based cumulus pa-

rameterization closures. In sections 2 and 3, we inspect

the implications of the empirical precipitation–buoyancy

relationship for convective adjustment time scales. We

estimate the sensitivity of buoyancy to thermodynamic

variables characterizing the lower free troposphere and

boundary layer. In section 4, we construct an empirically

informed precipitation closure, with both temperature

and moisture components, suitable for use in simple

models. In section 5, we use this closure to construct a

combined convective adjustment time tc, and further

show that tc can also be interpreted as the buoyancy or

APE removal time scale. In section 6, we posit reasons

for discrepancies in prior estimates of t associated with

the use of spatiotemporally averaged data or with the

neglect of the temperature influence on precipitation.

We summarize our results and discuss their implications

in section 7.

2. A simple buoyancy measure

The AN18 derivation begins by considering a plume

rooted in the boundary layer and rising moist adiabati-

cally up to the freezing level. The buoyancy B of this

plume at pressure level p was defined as

B(p)5 g

"
u
e
(p)2 ~u

e
*(p)

~u
e
*(p)

#
, (1)

where g is acceleration due to gravity, ue is the plume

equivalent potential temperature, and ~u*e (p) is the en-

vironmental saturation equivalent potential tempera-

ture. The definition of buoyancy in (1) relies on an

enforced separation between plume and environment,

which is slightly different from the definition based on

density differences in a continuous fluid (Doswell and

Markowski 2004).

Only the properties of the tropospheric air below the

freezing level were considered in AN18, since lower-

tropospheric thermodynamic variations strongly regu-

late deep convection (Kuang 2008a; Holloway and

Neelin 2009; Tulich and Mapes 2010; Raymond and

Flores 2016; Tian and Kuang 2019; Powell 2019). The

layer below the freezing level was further divided into

three coherent layers—within each of which ue* was as-

sumed invariant. The layer closest to the surface was

intended to represent the boundary layer properties,

while the other two free-tropospheric layers were in-

tended to resolve variations in thermodynamic profiles.

The plume was assumed to conserve ue, except upon

mixing with environmental air. The extent of mixing was

prescribed through a piecewise linear vertical mass-flux

profile, characterized by different slopes in each of the

three coherent layers. These slopes quantified the rela-

tive contribution of each layer to the plume ue as it
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ascended to the freezing level. A physics-informed,

data-mining exercise was then used to extract optimal

values for the mass-flux slopes using data from TRMM

3B42 precipitation (Huffman et al. 2007) and ERA-

Interim (Dee et al. 2011) thermodynamic information.

This ‘‘reverse engineered’’ mass-flux profile described

environmental air flowing into the plume in a vertically

thick layer that extended from the surface to the freez-

ing level. This ‘‘deep inflow’’ profile is a commonly ob-

served feature in strong convective systems (e.g., Ferrier

and Houze 1989; Kingsmill and Houze 1999; Mechem

et al. 2002; Schiro et al. 2018). See section 4 in AN18 for

more information on the reverse-engineering proce-

dure. An expression for the average buoyancy BL in the

two layers above the boundary layer was subsequently

derived. When precipitation was conditionally averaged

by BL, the resulting curves collapsed across oceanic and

continental regions. Despite the use of only three layers

to resolve the vertical structure and a number of ap-

proximations in the derivation, BL is still an improved

measure over other bulk measures such as column water

vapor (CWV) in relating precipitation to its thermody-

namic environment. Specifically, BL can be viewed as a

more generalized version of bulk measures such as

column saturation fraction (Bretherton et al. 2004) or

the ordered pair of CWV and column-averaged tem-

perature T (Neelin et al. 2009; Kuo et al. 2018).

While any quasi-conserved plume property [e.g.,

moist static energy (MSE)] can be used to construct

BL, ue was used in the AN18 derivation because it has

optimal properties in terms of both physics (conser-

vation during moist adiabatic transformations) and

mathematical tractability (lack of virtual temperature

and ice phase transformations); ue, however, is still a

nonlinear function of the environmental moisture and

temperature. Here, we pursue a simpler expression for

BL. In this spirit of simplicity, we assume two coherent

layers: the boundary layer (a 150-hPa-thick layer

above the surface), and a lower-free-tropospheric

layer (a layer that extends from above our nominal

boundary layer to 500hPa). We assume that the mass-flux

profile—which specifies environmental mass inflow to the

plume—has slopes a and b in the boundary layer and the

lower free troposphere, respectively. With these assump-

tions and following the same steps as in AN18, we can

derive the following expression for BL (ms22):

B
L
5 g

264wB

(u
eB
2 u

eL
* )

u
eL
*

2w
L

u1eL
u
eL
*

375 , (2)

where ueB is the boundary layer averaged ue; ueL* is the

lower-free-tropospheric-averaged ue*; and u1eL 5 ueL* 2 ueL

is a measure of subsaturation, where ueL is the lower-

free-tropospheric-averaged ue. The following definitions

follow for the parameters wB and wL, which are func-

tions of the amount of mass inflow and pressure thick-

ness within each layer:

w
B
5

aDp
B

bDp
L

ln

�
aDp

B
1 bDp

L

aDp
B

�
, (3)

w
L
5 12w

B
. (4)

Here, DpB and DpL are the pressure thicknesses in

the boundary layer and the lower free troposphere,

respectively. The slopes of the mass-flux profile, a and

b control the relative influence of the boundary layer

and the lower free troposphere on the plume buoy-

ancy at the freezing level. We will further assume

that a single slope characterizes the linear mass-flux

profile in both the boundary layer and the lower free

troposphere, such that a 5 b. The plume ue is only

sensitive to the fractional contribution from each

layer, which yields the constraint: wb 1 wL 5 1. In this

study, we only consider data over tropical oceans. We

accordingly assume fixed values of DpB 5 150 hPa and

DpL 5 350 hPa, which prove adequate in capturing the

leading-order vertical structure variations over tropi-

cal oceans that influence the precipitation statistics.

These fixed layer depths and the condition that a 5 b

yields wB 5 0.52 from (3).

In (2), the first term on the right hand side is CAPE-

like: it measures the undilute plume buoyancy based

only on lower-free-tropospheric temperature stratifica-

tion and boundary layer properties, and carries a frac-

tional weightingwB. SinceBL is an integral measure that

does not distinguish between positive- and negative-

signed values, this term could also be termed CIN-like.

The second term is a measure of subsaturation. It can be

thought of as the reduction of buoyancy by entrainment

of subsaturated free-tropospheric air into the plume.

Hence, wL 5 1 2 wB is the penalty imposed by the

subsaturated air on BL. The plume buoyancy, as defined

in (2) is therefore sensitive to the temperature stratifi-

cation, boundary layer moist entropy and the dryness of

the lower free troposphere. The value of wB (5 0.52)

implies that both the CAPE-like and subsaturation ef-

fects are nearly equally important to BL.

We now approximate layer-averaged ue variables in

the form of moist enthalpy e using

u
eB
’

e
B

P
B

, (5)

u
eL
’

e
L

P
L

, (6)
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where eB and eL are the e values averaged over

the boundary layer and the lower-free-tropospheric

layer, respectively. The terms PB and PL are simi-

larly layer-averaged values of the Exner function,

P(p)5 (p/p0)
Rd/Cp , with a reference pressurep05 1000hPa.

The moist enthalpy, e 5 T 1 q, where T and q are the

temperature and specific humidity, respectively, but q is

scaled by the latent heat of vaporization divided by the

specific heat of dry air at constant pressure Ly/cp to have

the same units as T (K). Moist enthalpy, therefore, has

units of K, as opposed to the more traditional units of

J kg21. With the approximations in (5) and (6), we re-

write the buoyancy in (2):

B
L
’

g

e
L
*
P

L

�
w

B
e
B

P
B

1
w

L
e
L
2 e

L
*

P
L

�
. (7)

Equation (7) is a simpler version of the buoyancy in

(2). The expression eschews the nonlinear ue, and in-

volves only e: a linear combination ofT and q. Naturally,

e* 5 T 1 q*.

We now pause to ask if BL as defined in (7) is em-

pirically adequate as a predictor to justify further

analysis. To answer, 4-times-daily observed precipi-

tation from TRMM 3B42 at a horizontal resolution of

0.258 are matched to simultaneous values of thermo-

dynamic structures from ERA-Interim from years

2010–14. The data from the four major tropical ocean

basins—whose bounds are detailed inAN18—are pooled

together to improve sampling, but results here are in-

sensitive to the ocean basin being used.

Figure 2 compares the tropical ocean precipitation

conditionally averaged by the ue-basedBL fromAN18 to

the simplified version of BL in (7). Recall that the sim-

plified version ofBL is based on a two-layer construction

with a single mass-flux slope (a5 b) and the use of moist

enthalpy, e instead of ue. The different-colored markers

indicate different values of temperature averaged be-

tween 200 and 1000hPa T. Neelin et al. (2009) showed

that T tracks geographical variations in the value of

CWV at which the conditionally averaged precipitation

shows a sharp increase. Figure 2a shows how the use of a

single buoyancy variable captures both the T and CWV

dependence of tropical oceanic precipitation. Figure 2c

shows precipitation conditionally averaged by two-

layer, moist enthalpy version used from (7). Figures 2a

and 2c indicate that the approximation of buoyancy by

the simplified version does not alter the salient fea-

tures of the precipitation–buoyancy relationship: the

sharp increase in precipitation at near-zero BL. The

noticeable difference occurs in the range of sampled

BL values (Fig. 2b vs Fig. 2d). The pdf of ue-based BL

extends out to more negative values (Fig. 2b) than the

moist enthalpy version. This difference in the spread

of the pdfs arises from the greater number of degrees

of freedom in the ue-based buoyancy (three vertical

layers) than the moist-enthalpy-based version (two ver-

tical layers). The results in Fig. 2 are similar when we use

DpB 5 100hPa (not shown). Figure 2 justifies the use of

the simplified version of BL from (7), at least over the

tropical oceans.

3. Computing convective sensitivities to BL

Figure 2 suggests that the appropriate function relat-

ing conditionally averaged precipitation, P to BL would

be the ramp function:

P5a(B
L
2B

c
)H(B

L
2B

c
) , (8)

where a is the slope that relates the change in P to a unit

change in BL. Here, H is the Heaviside function [such

that H(x) 5 1 for x . 0, and H(x) 5 0 for x # 0].

Precipitation is, therefore, nonzero only when BL ex-

ceeds the critical buoyancy valueBc. Equation (8) is also

consistent with the underlying hypothesis from AN18

that P begins its rapid increase as buoyant plumes sur-

vive to reach the freezing level. The empirical relation-

ship in (8) is convenient because it side-steps the details

of microphysics and subgrid-scale dynamics, and di-

rectly relates precipitation to gridscale thermodynamics.

The values of both a and Bc are computed from ob-

servations, as shown in Fig. 3. The blue scatter in Fig. 3 is

P versus BL for all T values from Fig. 2c. A straight line

is fit to the blue scatter betweenP values 1 and 4mmh21,

using linear regression. The slope of the line is a and the

x intercept is the critical buoyancy value, Bc—which is

close to zero. The curvature in the ‘‘foot’’ region nearBc

signals a departure from the ramp function; small sto-

chastic fluctuations in the value of Bc can produce this

curvature (Stechmann and Neelin 2011; Hottovy and

Stechmann 2015). In Fig. 3, the mode of the BL pdf (in

gray scatter) indicates that tropical oceans spend sub-

stantial time around BL values close to Bc. The sharp

P–BL relationship further suggests that tropical precip-

itation consumes positive excursions in BL and pro-

duces precipitation in the process. The pdf of BL and

the P–BL relationship, together, are consistent with the

QE condition—and variations around it—over tropical

oceans. Statistically speaking, convection appears to

consumeBL sufficiently fast compared to the typical rate

of environmental supply to produce the sharp drop in

the pdf of BL, when buoyancy values exceed Bc. The

slope of the P–BL relationship, a, measures the rate of

this buoyancy consumption. This reasoning parallels pre-

vious arguments based on observed water vapor statistics
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(e.g., Peters and Neelin 2006; Neelin et al. 2009; Holloway

and Neelin 2009) but with an explicit buoyancy formu-

lation. Sections 5b and 5c discuss the consumption of

buoyancy by convection in further detail.

a. Linearized precipitation–buoyancy relationship

Consider values of BL $ Bc. For this set of BL values,

precipitation perturbations, P0 arise in response to BL

perturbations, B0. The linearized version of (8) is

P0 5aB0 . (9)

The expression (7) suggests thatBL is a function of eB,TL

and qL, so we accordingly approximate B0 with a Taylor

expansion ofBL around a reference value. The approximate

linearity of the empirical relation implies insensitivity

to the choice of reference above Bc such that:

B0 5
›B

L

›e
B

e0B 1
›B

L

›q
L

q0
L 1

›B
L

›T
L

T 0
L 1O(e02B , q

02
L ,T

02
L , . . .).

(10)

Using (10) in (9), we get

P0 5 c
p

Dp

g
Q0

c 5a
›B

L

›e
B

e0B 1a
›B

L

›q
L

q0
L 1a

›B
L

›T
L

T 0
L , (11)

where precipitation perturbations are related to the in-

tegral of the column-averaged latent heating rate Qc,

over a column with thickness Dp. The heat capacity of

FIG. 2. (a) Tropical oceanic precipitation conditionally averaged by the three-layer ue-based buoyancy as inAN18

and (b) the probability density function (pdf) of AN18 buoyancy. (c),(d) As in (a) and (b), but averaged by the two-

layer, moist-enthalpy-based buoyancy BL from (7). The different colors indicated different values of the tropos-

pherically averaged temperature (K).
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dry air is cp. Considering small perturbations allows us to

drop terms greater than first order from the Taylor ex-

pansion. Now (11) can be rearranged to obtain an ex-

pression for Q0
c:

Q0
c 5

e0B
t
b

1
q0
L

t
q

2
T 0
L

t
t

, (12)

where tb, tq, and tt have units of time, and the following

definitions:

t
b
5

c
p
Dp

ag

�
›B

L

›e
B

�21

, (13)

t
q
5

c
p
Dp

ag

�
›B

L

›q
L

�21

, (14)

t
t
52

c
p
Dp

ag

�
›B

L

›T
L

�21

. (15)

From (12), one might be tempted to conclude that the

buoyancy adjustment proceeds in three independent

pieces with associated adjustment time scales: tb, tq, and

tt. We show in section 5b that this interpretation is in-

correct, and that a single time scale rules the purely

convective response. The column-integrated heating

will have to balance the drying; this balance ultimately

constrains the rates of consumption, which as we show in

section 5 controls the convective adjustment time scale.

For now, it is useful to examine the physical insights

offered by the time scales tb, tq, and tt. Since these time

scales emerge from the partial derivatives of BL, they

can be viewed as measures of the sensitivity of con-

vection to perturbations e0B, q
0
L, and T 0

L. The partial

derivatives in (13)–(15) can be expressed in terms of

the base-state variables, using (7):

›B
L

›e
B

5
gP

L

e
L
*

w
B

P
B

, (16)

›B
L

›q
L

5
g

e
L
*
w

L
, (17)

›B
L

›T
L

52
g

e
L
*
P

L

"�
w

B

P
B

e
B

e
L
*
1

w
L

P
L

e
L

e
L
*

� 
11

L
y
q
L
*

R
y
T2

L

!
2

w
L

P
L

#
,

(18)

where overbars denote the base state variables. In de-

riving (16)–(18), we have used the relations: eL5 qL1TL

and eL*5 qL*1TL. We have also employed the Clausius–

Clapeyron relationship:

›q
L
*

›T
L

5
L

y
q
L
*

R
y
T

2
L

;

Ly and Ry are the latent heat of vaporization and the gas

constant of water vapor, respectively. The partial de-

rivatives in (16)–(18) exist entirely in the form of base

state properties. At this point, we choose our base state

as the set of conditions that haveBL slightly greater than

Bc (BL 5 0.015ms22). This allows us to relate both

positive and negative signed BL perturbations to corre-

sponding precipitation perturbations. Whereas when

BL 5 Bc, only positive perturbations of BL induce pre-

cipitation changes.

Observed base state properties—see Table 1—are

plugged into (16)–(18) along with values for wB 5 0.52

and wL 5 0.48 implied by the assumed layer depths

and the linear mass-flux profile. The following estimates

for convective sensitivities, in units of hours, are then

derived:

t
t
’ 2:7 h, (19)

t
q
’ 11:3 h, (20)

t
b
’ 11:5 h. (21)

The expressions (19)–(21) show two well-separated

time scales: one associated with temperature sensitivity,

and the other with moisture sensitivity. The strength of

the precipitation response for base states withBL$Bc is

encapsulated in the single parameter a, which charac-

terizes the linear precipitating regime in Fig. 3. Fixing

FIG. 3. Precipitation from all tropical oceans conditionally

averaged by the moist-enthalpy-based buoyancy (blue) and

the accompanying analytic approximation of conditionally

averaged precipitation using (8) (red). The values a and Bc

are parameters of the approximation. The probability density

function of the moist-enthalpy-based buoyancy across all oceans is

shown in gray.
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a implies insensitivity of the precipitation response

to the base state. Indeed, the time scales listed in

(19)–(21) remain robust to the choice of base states

with BL $ Bc (not shown). Capturing the precipita-

tion with a smoother function, [e.g., the exponential

in Bretherton et al. (2004) from daily averaged data]

offers multiple valid base states for linearization,

which consequently yields multiple estimates for the

convective adjustment time scale (Adames 2017). A

discussion on why the curve resembles an exponential

function is presented in section 6.

The derivation of (12) from (9) involves relating

column-averaged heating rate to layer-averaged en-

thalpies. An alternative derivation can relate column-

integrated heating to layer-integrated enthalpies. This

derivation will reduce the values of tt, tq, and tb, but will

preserve the separation between tt and tq—which as we

will see, is what ultimately controls the convective ad-

justment time scale. Also note that splitting eL into its

constituent TL and qL implies a loss of the conservation

properties associated with the balance between heating

and drying. It is nevertheless useful to explicitly write

out the dependence of BL on TL and qL, since most

governing equation sets contain separate prognostic

equations for temperature and moisture. This split

allows (12) and its nonlinear version to be directly

employed as a precipitation closure in such equation

sets—as demonstrated in sections 4 and 5.

b. Temperature versus moisture sensitivity

Temperature perturbations (T 0
L) play a different role in

the convective response than either moisture (q0
L) or

boundary layer enthalpy (e0B) perturbations. For instance,
the negative sign in front of T 0

L in (12) indicates that

precipitation acts to remove lower-free-tropospheric cold

anomalies. This cold-anomaly response is partly consistent

with the idea that convection eliminates positive lapse

rate anomalies (Manabe et al. 1965; Betts 1986). We

only use a lower-free-tropospheric temperature, so the

cold-anomaly response also reflects the CIN-controlled

view of convection (Mapes 1997, 2000; Raymond et al.

2003; Raymond and Fuchs 2007), where negative lower-

tropospheric temperature anomalies erode a deep CIN

layer (Raymond et al. 2003; Kuang 2010; Tulich and

Mapes 2010; Fuchs et al. 2014; Herman et al. 2016), and

elicit a precipitation response.

To elucidate the physical basis for why tt is noticeably

smaller than tq, substitute eB 5 ueBPB and eL 5 ueLPL

back into (17) and (18), and assume wB 5 wL to obtain

g5
t
q

t
t

’ (21g
cape

2 g
subsat

)h
L
2 1, (22)

where

g
cape

5
u
eB
2 u*eL

u
eL
*

,

g
subsat

5
u1eL

u*eL
,

h
L
5 11

L
y
q
L
*

R
y
T

2
L

5P
L

›u
eL
*

›T
L

.

Equation (22) contains three distinct and relevant base-

state properties:

1) gcape, a measure of the lower-free-tropospheric plume

stability is impacted by differences between the bound-

ary layer ue and the lower-free-tropospheric ue*.

2) gsubsat is the degree of subsaturation in the lower free

troposphere. This term represents the effects of

plume dilution by the ambient subsaturated air.

TABLE 1. Table of parameters used to estimate adjustment times. Parameters PB through eB are conditionally averaged for BL 5 0.015ms22.

Quantity Description Value

DpB Pressure thickness of the boundary layer 150 hPa

DpL Pressure thickness of the lower free troposphere 350 hPa

wB Boundary layer contribution to BL 0.52

wL Lower free troposphere contribution to BL 0.48

Dp Pressure thickness of the column 800 hPa

a Slope of P–BL relationship (Fig. 3) 20.6mmh21 (m s22)21

Bc Critical buoyancy for precipitation pickup (Fig. 3) 21.5 3 1022 m s22

PB Boundary layer average of Exner function 0.97

PL Lower-free-tropospheric average of Exner function 0.88

qL* Lower-free-tropospheric average of saturation moisture 23.43K

TL Lower-free-tropospheric average of temperature 280.31K

eL Lower-free-tropospheric average of moist enthalpy 300.16K

eL* Lower-free-tropospheric average of saturationmoist enthalpy 300.93K

eB Boundary layer average of moist enthalpy 332.88K
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3) hL is a factor that handles the linearized translation

between ueL* and TL. It includes a term due to the

direct effect of temperature, and one due to the

Clausius–Clapeyron relationship. The former di-

rect effect tracks changes to the ambient ueL* against

which the plume ue is being compared to. The latter

effect captures the influence of temperature changes

on the ambient saturation levels. For our assumed

base state values, hL ’ 2.5.

We find that for base states on the verge of condi-

tionally averaged precipitation (BL’Bc), gcape’ gsubsat
(not shown). So (22) reduces to

g’ 4:

For typical conditions, the ratio of convective sensi-

tivity to temperature versus moisture perturbations is

about a factor of 4, when expressed in common units of

moist enthalpy. For the numerical values in (19)–(20),

g 5 4.2. Changes in TL impact both the stability and

subsaturation components of BL—as seen from the

factor hL in (22). Changes in qL, on the other hand, only

impact BL by modifying the environmental subsatura-

tion u1eL. The BL measure is agnostic to boundary layer

temperature versus moisture perturbations; it responds

to the combined boundary layer moist entropy (ueB)

changes bymodifying the plume stability. Convection, in

this sense, is more sensitive to lower-free-tropospheric

temperature anomalies than to lower-free-tropospheric

moisture or boundary layer moist enthalpy anomalies.

Note also that g is dependent on the base state stability

parameters, gcape and gsubsat. In more unstable base

states, that is, when gcape . gsubsat, the separation be-

tween tt and tq will widen.

It is worth considering the spatial scales for which

the time scales derived using (13)–(15) are applicable.

The analysis in this section relies on the statistical re-

lationship displayed in Fig. 3, particularly on the slope

of the P–BL relationship. The scales of applicability

are therefore implied by the grid size of the ERA-

Interim and TRMM 3B42 datasets used to produce

Fig. 3, which is;800 km2. Coarse-graining above these

spatial scales can distort the linearity and conse-

quently, the slope of the P–BL relationship, as dis-

cussed in section 6. However, previous results from the

coarse-graining of the precipitation–CWV relation-

ship suggests that this distortion is gradual (see Fig. 8

in Kuo et al. 2018), with similar results for the pre-

cipitation pickup holding even for a 18 grid cell, that is,

;104 km2. We therefore use 104 km2 as a rough upper

bound for which the derived time scales in (13)–(15)

are valid. For spatial scales finer than our dataset,

preliminary examination using the 0.18 ERA5 dataset

(Hersbach et al. 2019) suggests that the slope of the

P–BL relationship is not greatly modified (not shown).

In fact, precipitation appears to be robustly related to

column saturation fraction even for grid sizes;1km2 in

cloud-resolving simulations (Wang and Sobel 2011; Igel

et al. 2017; Igel 2017). There is, therefore, a strong sug-

gestion that the P–BL relationship and the time scales in

(13)–(15) are robust at spatial scales finer than that of

the dataset used in this study. The smallest spatial scales

for which the P–BL relationship remains unaltered is

worth examination in future work.

4. The q–T closure

Equations (8) and (12) constitute simple precip-

itation closures for use in vertically resolved models

with separate prognoses of the boundary layer and

the free troposphere. Precipitation closures in many

models of minimal and intermediate complexity,

however, involve column-integrated variables (Neelin

and Yu 1994; Yu and Neelin 1994; Neelin and Zeng

2000; Fuchs and Raymond 2002; Sugiyama 2009;

Sobel and Maloney 2012; Adames and Kim 2016).

We accordingly modify our closures for use in such

models, whose thermodynamic budget equations

resemble

›q̂

›t
5 S

q
1D

q
2P , (23)

›T̂

›t
5 S

T
1D

T
1 Q̂

c
, (24)

where T̂ and moisture q̂ are the column-integrated

temperature and moisture, respectively. Here, Sq and

ST are source terms excluding precipitation P and

column-integrated convective heating Q̂c, respec-

tively. The transport terms for moisture and tem-

perature are Dq and DT, respectively, and Q̂c is

assumed equivalent to P. The variables T̂ and q̂ could

represent either full variables or fluctuations around a

mean state.

We now assume that the layer-averaged thermody-

namic variables are linearly related to their column-

integrated counterparts, such that

(T
L
,q

L
,T

b
, q

b
)5

g

Dp

 
T̂

L
TL

,
q̂

L
qL

,
T̂

L
TB

,
q̂

L
qB

!
, (25)

where Dp is the depth of the column, LTL is the ratio

between the column-integrated temperature T̂ and

the lower-free-tropospheric-integrated temperature TL,

and similarly for LqL, LTB, and LqB. Using (25) and

(12), we obtain the following definitions for measures of
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convective sensitivity to column-integrated moisture ~tq
and temperature ett:

~t
q
5

 
1

L
qB
t
b

1
1

L
qL
t
q

!21

, (26)

~t
t
5

�
1

L
TL
t
t

2
1

L
TB
t
b

�21

. (27)

Transforming tt, tq and tb to ~tt and ~tq inevitably in-

troduces assumptions about the vertical structure of

moisture and temperature perturbations. If A(p) and

B(p) are the vertical structures of temperature and

moisture variations, respectively, then

L
TL

5
Â

Â
L

Dp
L

Dp
; L

qL
5

B̂

B̂
L

Dp
L

Dp
;

L
TB

5
Â

Â
B

Dp
B

Dp
; L

qB
5

B̂

B̂
B

Dp
B

Dp
;

where Â and B̂ are mass-weighted, vertical integrals of

A and B over the column; ÂL and B̂L are integrals over

the lower free troposphere; ÂB and B̂B are integrals

over the boundary layer. Consider two limiting cases for

temperature and moisture fluctuations:

1) Free-tropospheric fluctuations only: If temperature

and moisture fluctuations are absent in the boundary

layer (tb / ‘), and if the vertical structure of

thermodynamic variations follow the first empiri-

cal orthogonal functions (EOFs) of the tempera-

ture and moisture time series from Nauru (as in

Holloway and Neelin 2009; also see appendix,

Fig. A1), then LTL 5 1.1 and LqL 5 0.6, which

yields ett ’ 2:9 h and etq ’ 6:7 h.

2) Full-tropospheric fluctuations: When boundary layer

variations from the first EOFs of the Nauru

time series are included, LTL 5 1.0, LqL 5 0.6,

LTB 5 1.7, and LqB 5 1.1, which leads to ett ’ 3:1 h

and etq ’ 4:4 h.

While ~tt ; tt, etq is substantially smaller than tq for

both cases 1) and 2) above. This reduction is largely

due to the bottom-heavy vertical structure of mois-

ture variations. The linearized moisture–temperature

(q–T) closure becomes

P0 5
q̂0

~t
q

2
T̂ 0et
t

, (28)

and its nonlinear version can be written equivalently by

expressing (8) as

P5

 
q̂

~t
q

2
T̂et
t

2aB
c

!
H(B

L
2B

c
) , (29)

or

P5

"
(q̂2 q̂
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)
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c
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Here, q̂c and T̂c are column-integrated moisture and

temperature values, respectively, such that

B
L
(q̂

c
, T̂

c
)5a21

 
q̂
c

~t
q

2
T̂

cet
t

!
5B

c
. (31)

Convection is now assumed to act on the large-scale

environment by adjusting q̂ to q̂c, and T̂ to T̂c, respec-

tively. Here, the combination (qc, Tc) denotes the set of

all q̂ and T̂ values that mark the QE or adjusted state.

Closures (28) and (30) match the BM scheme modi-

fied for use in the quasi-equilibrium tropical circulation

model (QTCM; Neelin and Zeng 2000). Note, however,

that the BM scheme makes two separate postulates

about moisture and temperature adjustment. The clo-

sures in (28) and (30), in contrast, emerge from a single

empirically informed postulate about how precipita-

tion consumes BL. This closure is also similar to the

CIN-saturation fraction closures proposed in Fuchs

and Raymond (2002) and Raymond and Fuchs (2007).

These studies separated their precipitation response

into ‘‘moisture adjustment’’ and ‘‘buoyancy adjust-

ment’’ components—with the latter incorporating the

effects of CAPE and CIN. In the closure implied by

(28) and (30), moisture and temperature fluctuations

are two pieces in a single adjustment process that en-

capsulates the effects of dilution, static stability, and

boundary layer enthalpy variations. However, the math-

ematical form of the q–T closure is equivalent to theCIN-

saturation fraction closures. Although the CIN-based

assumptions were not explicitly included, they implicitly

enter our analysis when considering separate thermody-

namic fluctuations in the boundary layer and the lower

free troposphere. The closures in (28) and (30) are also

consistent with empirical analyses expressing precipita-

tion as a function of CWV and T (Neelin et al. 2009;

Kuo et al. 2018).

5. Adjusting to QE

When convectively tranquil conditions are thermo-

dynamically perturbed, convection responds by relaxing

the perturbed environment to an adjusted state. The fi-

nal adjusted state is not necessarily the same as the ini-

tial unperturbed state. How are these adjusted states
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related to each other? How long does it take to ac-

complish the adjustment? In this section, we examine

how the adjusted state and the convective adjustment

process are related to each other and to the sensitivity

time scales derived in the preceding section.

a. Base-state trade-offs

The pdf of BL in Fig. 2 indicates that positive excur-

sions in BL are consumed rapidly, and the mode of the

BL pdf peaks close to Bc—implying that negative ex-

cursions inBL are also consumed, though not as rapidly.

Tropical base states in precipitating regimes are there-

fore characterized such that their BL ’ Bc; that is, they

fluctuate about an adjusted QE state. Multiple combi-

nations of eB, qL and TL can yield the same value of Bc.

The QE state is, therefore, not a single point in the

three-dimensional space spanned by eB, qL, and TL,

but a set of points that constitute a two-dimensional

surface. When eB, qL, and TL are modified by pertur-

bations external to convection, they are constrained to

evolve toward the QE state. We explore some straight-

forward implications of this constraint for how the ad-

justed QE state varies with convection’s sensitivity to

moisture and temperature.

We work with ue variables in lieu of moist enthalpy.

Since the adjustedQE state also corresponds to themost

probable state, it can be interpreted as the mean state or

the base state. Consider two adjusted (or base) states,

such that

B
L
5B

c
(u

eB1
, u

eL1
, u

eL1
* )5B

c
(u

eB2
, u

eL2
, u

eL2
* ),

where the two base states have different combinations

of ueB, ueL, and u*
eL
, differentiated by subscripts 1 and 2.

Using (2) and (3), we can write

[(u
eB1

2 u
eL1
* )2 (u

eB2
2 u

eL2
* )]5

(12w
B
)

w
B

(u1eL1 2 u1eL2) ,

(32)

where we have assumed negligible differences between

ueL1* and ueL2* , when they appear in the denominator.

Recall that wB and wL 5 12 wB are the contributions

of the CAPE-like quantity and the subsaturation

components to BL, respectively. Larger values of wL

imply greater influence from the subsaturation term

and therefore increased entrainment in the lower free

troposphere. Comparing (2) and (32) makes it clear

that base states in QE exhibit compensations between

CAPE and subsaturation contributions, with the degree

of compensationmodulated by the extent of entrainment.

With substantial entrainment, (wB , 0:55wL . 0:5), a

given change in subsaturation elicits greater changes in

CAPE. Moreover, when boundary layer ue is relatively

constant, changes in the CAPE-like quantity would be

associated with changes in static stability. The result

(32) therefore connects with findings from Singh and

O’Gorman (2013), who explored entrainment impacts

on the static stability of different base states (see their

Fig. 3), and also with lower-tropospheric moisture–static

stability relationships termed moisture quasi equilibrium

(Raymond et al. 2015; Sessions et al. 2019).

Now, consider three special cases for wB:

1) wB 5 wL 5 0.5. These values of wB and wL corre-

spond to entrainment prescribed by a deep-inflow

mass-flux profile for the assumed layer depths in

section 2, and have empirical support (AN18; Schiro

et al. 2018). With these values for wL and wB, con-

dition (32) gives

(u
eB1

2 u
eL1
* )2 (u

eB2
2 u

eL2
* )5 u1eL1 2 u1eL2 . (33)

In this case, base states evolve such that changes to

their lower-free-tropospheric subsaturation are can-

celled by equally opposite changes to the base-state

undilute buoyancy.

2) wB 51 (nonentraining): This condition implies neg-

ligible entrainment in the lower free troposphere, so

BL is completely determinedby thedifferences between

boundary layer ue and the lower-free-tropospheric ue*,

that is, by the CAPE-like term. The condition (32) now

yields

u
eB1

2 u
eL1
* 5 u

eB2
2 u

eL2
* . (34)

In this nonentraining case, increases in boundary

layer ue are exactly cancelled by increases in lower-

free-tropospheric ue*. Comparing (34) to (2), we see

that the undilute plume buoyancy (CAPE) remains

unchanged between adjusted states. If we additionally

assume that Bc 5 0, we get ueB1 5 ueL1* , so base states

simply maintain convective neutrality to reduce all

positive BL perturbations.

3) wB 5 0: This condition implies heavy entrainment in

the lower free troposphere, such that the influence

of CAPE on BL vanishes. The condition (32) now

reduces to

u1eL1 5 u1eL2 . (35)

In the heavily entraining case, base states simply

maintain the same subsaturation, while the lapse rates

are unconstrained by convection. This condition further

implies that warmer base states will hold more moisture

in the lower free troposphere, exactly in accordance

with the Clausius–Clapeyron relationship. If we further

assume that Bc 5 0, then we get ueL 5 ueL* ; that is,
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convection maintains neutral buoyancy only when the

lower free troposphere is saturated.

The degree of dilution by free-tropospheric air

therefore constrains the thermodynamic properties

of the adjusted states. In practice, case 2 is rarely en-

countered, while case 3 is never encountered. In climate

models, the entrainment effects on deep convection are

explicitly specified inside the deep convective scheme.

Moreover, the convective adjustment within the deep

convective schemes proceeds analogously to the BL

adjustment. Despite the sensitivity of the climate model

precipitation field to several parameters in the micro-

physics and shallow convective schemes (Qian et al.

2018), the cases discussed above are therefore still useful

when interpreting aspects of mean state responses to

entrainment experiments in these models (Mapes and

Neale 2011; Kim et al. 2011, 2012).

b. Time scales of convective adjustment

Within the foregoing framework, we can ask how the

difference in convective sensitivity to moisture versus

temperature perturbations determines the transient

character of convective adjustment, including a single

time scale for the adjustment of BL. Consider the simple

system (23) and (24), without the source or transport

terms, which gives �
›q̂

›t

�
c

52Q̂
c
, (36)

 
›T̂

›t

!
c

5 Q̂
c
, (37)

where the subscript c clarifies our interest in how con-

vection reacts to external perturbations. Note that Q̂c

here subsumes the effects of all the processes that con-

tribute to condensational heating including microphys-

ical changes, eddy transports, and downdrafts.

We will use (30) to represent Q̂c. Consider perturba-

tions, q̂0 5 q̂2 q̂c and T̂
0 5 T̂2 T̂c, such thatBL(q̂, T̂).

Bc(q̂c, T̂c). Assuming that both q̂0 and T̂ 0 exponentially
decay with a convective adjustment time scale l21 sets

up a simple eigenvalue problem: 
l1

1

~t
q

!
q̂0 2

T̂ 0

~t
t

5 0, (38)

q̂0

~t
q

2

�
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1

~t
t

�
T̂ 0 5 0: (39)

The constraint of nontrivial solutions to q̂0 and T̂ 0 yield
two eigenvalues, l1 and l2, and the conditions satisfied

by their respective eigenvectors:

l
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q

5
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q
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t
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q
~t
t

!
; q̂0 52T̂ 0 . (41)

Conditions (40) and (41) yield more insight into the

adjustment process. In a two dimensional plane spanned

by q̂ and T̂ (the q̂–T̂ plane), we observe that:

1) The first eigenvector points in the direction of zero

precipitation—from (30). This simply corresponds to

the line containing all adjusted states. So the first

eigenvalue-eigenvector pair in (40) makes the ob-

servation that there is no adjustment when BL 5 Bc.

2) The second eigenvector in (41) points in a direction

that conserves column-integrated MSE, and thus

consumes both T̂ 0 and q̂0 at the same rate, given by

l2. This direction has a slope 5 21, which implies

that drying coincides with warming.

Despite convection’s greater sensitivity to tempera-

ture perturbations, both column-integrated temperature

and moisture anomalies are consumed at the same

rate. This is because convective tendencies are subject

to the additional constraint that column-integrated

latent heating must balance the column-integrated

drying due to phase change, or in other words, the

column-integrated MSE must be conserved during

adjustment. The time scale of convective adjustment,

tc 52l21
2 , is a combination of individual convective

sensitivities ~tq and ~tt:

t
c
5

~t
q
~t
t

~t
q
1 ~t

t

. (42)

Entirely disregarding convection’s sensitivity to tem-

perature (~tt /‘), yields tc 5 etq; that is, the convective

moisture sensitivity is also the convective adjustment

time. For both sets of ~tq and ~tt values described in

section 4, tc ’ 2 h. The large temperature sensitivity of

BL, therefore, constrains the convective adjustment

time to be short, that is, on the order of a few hours. Our

result is consistent with Raymond and Herman (2011),

who suggested that the large lower-tropospheric tem-

perature sensitivity of convection and moist entropy

conservation implied the same rapid consumption time

scale for both lower-tropospheric temperature and

moisture.

Figure 4 depicts how the BL adjustment proceeds in

q̂–T̂ plane. In this two-dimensional plane, the set of q̂

and T̂ values for which BL 5 Bc lie on a straight line,

which we term the ‘‘QE line.’’ The QE line is dashed in
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Fig. 4 and separates the q̂–T̂ plane into points that re-

spond to a forcing with adjustment from those that do

not. The left panel shows two equal and positive BL

perturbations: one entirely in q̂ (q-forcing) and the other

entirely in T̂ (T-forcing). Both forcings are adjusted to

the QE line with the same time scale tc. The angle of

adjustment is 2458 with respect to the origin, and is in-

dependent of the forcing. The adjusted states in both

cases are different from each other and also from the

initial unperturbed state.

The slope of the QE line is given by the ratio of ~tq to

~tt; changes to this slope impact the relationships be-

tween adjusted states. For instance, consider the case

when wb / 1, that is, the nonentraining case. Also as-

sume that the boundary layer moisture content is as-

sumed fixed, such that convection is not sensitive to

perturbations in the column-integrated moisture, that is,

~tq /‘. The QE line in this case is nearly vertical in

the q̂–T̂ plane (right panel in Fig. 4). This vertical QE

line also features in Sahany et al. (2012) for plume

calculations with low entrainment. The upper bound

of q̂ is fixed by the saturation value, which will restrict

the range of q̂ values usually encountered in the q̂–T̂

plane. For temperature perturbations with a fixed

vertical profile, the constant T̂ line also preserves the

lapse rate, and this case reduces to case 2 discussed in

section 5a. Changes to the moisture sensitivity of con-

vection, that is, the entrainment parameter, therefore

influence the adjusted states by modifying the slope of

the QE line.

The schematic in Fig. 5 elaborates the differences in

the adjustment process to separate moisture and tem-

perature perturbations. Temperature perturbations im-

pact plume buoyancy by modifying both the ambient

static stability and the subsaturation, whereas moisture

perturbations only change the subsaturation. The en-

suing convection responds to both perturbations with a

buoyancy adjustment that involves both temperature

and moisture components and produces an adjusted

state that is different from the unperturbed state. The

final adjusted state, while always on the QE line, can

correspond to a combination of T̂ and q̂ values that is

different from the initial state. Here, the differences

between initial and final states are governed by the

convection’s moisture and temperature sensitivities, ~tq
and ~tt, respectively.

It is worth bearing in mind that while positive buoy-

ancy perturbations are consumed by convection, the

ultimate fate of these perturbations is subject to the

collective action of both convective and nonconvective

processes. The convective adjustment process can in-

teract with dynamical feedbacks through the transport

terms to produce rich behavior (e.g., Neelin and Yu

1994; Sobel and Gildor 2003; Fuchs and Raymond 2005;

Ahmed and Neelin 2019). A follow-up study will ex-

amine such interactions in greater detail.

FIG. 4. A schematic adapted from Arakawa (2004) that depicts how convective adjustment proceeds in the q̂–T̂

plane. The dashed line is the QE line (31) that satisfies BL 5 Bc and its slope is governed by the ratio of the time-

scale parameters characterizing moisture and temperature sensitivity. (left) A realistic entrainment case, and the

adjustment associated with two positive buoyancy perturbations: one entirely in moisture (q-forcing) and the other

in temperature (T forcing). The adjustment occurs at a rate and direction given by (41). (right) Adjustment in

response to an arbitrary forcing, in the limit of no entrainment. The angle of convective adjustment is the same for

all three cases.
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c. Buoyancy removal time scale

Many present-day mass-flux-based cumulus parame-

terization schemes rely on a closure based on APE or

plume buoyancy removal (see section 5b in Arakawa

2004). To develop an analogous time scale for BL re-

moval, (36), (37), and (41) can be combined:

›Q̂
c

›t
52

Q̂
c

t
c

. (43)

Since Q̂c 5aBL, we now see that tc is also the BL ad-

justment time scale, when BL . Bc. For realistic values

of entrainment, we saw that tc ; 2 h, which is consistent

with analogous values employed in cumulus parame-

terization closures. The time scale tc, derived from

the slope of the empirical P–BL relationship in Fig. 2,

remains invariant over a wide range of base states.

However, the empirical dataset underlying our analysis

is at ;103 km2, with an estimated upper bound of

;104 km2 for the spatial scales over which the derived

value of tc is directly applicable. At larger spatial scales,

the derived value of tc can still be used, provided that the

neglected subgrid-scale variability is appropriately ac-

counted for—as discussed in the following section.

6. Rectified adjustment time scales

a. Effects of averaging

How can one reconcile the long adjustment times

(.10h) reported in several studies (Fuchs and Raymond

2002; Sobel and Bretherton 2003; Bretherton et al. 2004;

Jiang et al. 2016; Adames 2017; Rushley et al. 2018) with

shorter adjustment times (;2h) reported in this study,

recommended by Betts and Miller (1986), and used in

cumulus parameterization schemes? Entirely neglecting

convection’s temperature sensitivity can lead to longer

FIG. 5. A schematic depicting convective adjustment in response to moisture and temperature perturbations in

the lower free troposphere. (top) The reference sounding responds to (middle left) temperature perturbations with

changes to both the ambient subsaturation and lapse rate. (middle right) An equivalent perturbation in moisture

only impacts the subsaturation. In both cases, the convective adjustment has the same time scale of tc ; 2 h.

(bottom) The two adjusted states are, however, different from the initial sounding and from each other. The

difference between initial and final adjusted states is governed by the slope of the QE line (Fig. 4). The initial

sounding is rendered transparent in the middle and bottom rows.
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adjustment times associated with moisture sensitivity

only. However, such a neglect is only one source of dis-

crepancy in reported tc values. We posit that another

source of discrepancy lies in the use of spatiotemporally

averaged data to compute adjustment times, which con-

volves events fromboth precipitating and nonprecipitating

regimes. For simplicity, assume that the buoyancy fluctu-

ations are primarily in moisture, with temperature held

fixed at a large-scale value, as in the weak temperature

gradient approximation (WTG; Sobel and Bretherton

2000; Sobel et al. 2001). Further assume that moisture

fluctuations are vertically coherent, which then permits

column-integrated moisture to be used as the main

variable. The precipitation threshold in BL yields a

temperature-dependent threshold value of column-

integrated moisture, q̂c above which precipitation in-

creases linearly with moisture.

Consider a commonly used method to compute the ad-

justment times, in which precipitation is first conditionally

averaged by column-integrated moisture, and then a time

scale is estimated from the change in column-integrated

moisture dq per unit change in precipitation dP:

t
ave

5
dq

dP
. (44)

The overbar here refers to a spatiotemporal averaging

operation. Assume that the data are spatially discrete

and divided into grid cells. Within each grid cell, pre-

cipitation is assumed to remove q̂ perturbations greater

than q̂c with a time scale ttrue. Each grid cell is assumed

to be sufficiently small that the results of our empirical

analyses are applicable; that is, the grid cells are of order

103 to at most 104 km2. Grid cells with moisture pertur-

bations such that q̂. q̂c will elicit responses in gridscale

averaged precipitation, while cells with moisture per-

turbations such that q̂# q̂c, will not see a precipitation

response. The averaging operation in (44) that produces

tave, however, does not distinguish between precipitat-

ing and nonprecipitating grid cells in the sample, such

that the apparent adjustment time, tave will differ from

ttrue. For nonprecipitating grid cells, the adjustment

time as implied by (44) is infinity. If f is the fraction of

precipitating grid cells (or grid cells experiencing con-

vective adjustment), we can write dq and dP from (44):

dq’ d( f q
p
)1 d[(12 f )q

np
] , (45)

dP’P df 1 fdP , (46)

where qp and qnp are average moisture values over pre-

cipitating and nonprecipitating grid cells, respectively,

and P is the average rain over raining grid cells. We ex-

pand (45) as follows:

dq’ fdq
p
1 (12 f )dq

np
1 df (q

np
2 q

p
) , (47)

where df is the change in the fraction of precipitating

grid cells. Using (46) and (47) in (44), we obtain

t
ave

5C

�
t
true

1

�
12 f

f

�
t
np1

1
df

f
t
np2

�
, (48)

where we have introduced the following definitions for

three different time scales:

t
true

5
dq

p

dP
,

t
np1

5
dq

np

dP
,

t
np2

5
q
p
2 q

np

dP
,

where ttrue is the true moisture adjustment time, that is,

the time scale associated with moisture removal via

precipitation. The quantities tnp1 and tnp2 have units

of time, but do not describe the convective adjustment

process. They relate the moisture changes in the non-

precipitating grid cells to the precipitation change, and

likely depend on details of moisture transport. We have

also defined a dimensionless coefficient C:

C5

 
11

df

f

P

dP

!21

. (49)

This constant C varies with the fraction of non-

precipitating grid cells in the averaging sample. In dry

environments, C , 1. In moist environments, as f / 1,

the change in the fraction of precipitating grid cells,

df / 0, which implies that C / 1.

The time scale implied by tave, therefore, contains

contributions from ttrue, tnp1, and tnp2. For a significant

fraction of nonprecipitating grid cells in the sample, tave
can be considerably longer than ttrue. For samples with

a greater fraction of precipitating grid cells; that is, as

f / 1, tave will approach ttrue. When (44) is used with

data averaged over time scales longer than the true ad-

justment time, the resulting value is a rectified time scale

that contains information about both the convective

adjustment and the fraction of nonprecipitating grid

cells in the spatiotemporal averaging interval.

b. Validation with a stochastic model

To demonstrate the validity of the statements per-

taining to spatiotemporal averaging and the effects of

neglected influences on precipitation, we present analysis
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from a simple stochastic model of tropical precipitation.

Variants of this model have featured in several prior

works (Stechmann and Neelin 2011, 2014; Abbott et al.

2016; Neelin et al. 2017; Martinez-Villalobos and Neelin

2019), so only a brief description is provided here. This

model contains a single prognostic equation for column-

integrated moisture q̂:

dq̂5 (E1 q̂D2P)dt1 q̂s
c
j
c
dt , (50)

an Ornstein–Uhlenbeck (Gardiner 2004) equation for

the stochastic term jc:

dj
c
52j

c

dt

t
ac

1
dW

t

t
ac

, (51)

and a BM-type closure for precipitation:

P5
(q̂2 q̂

c
)

t
true

H(q̂2 q̂
c
) . (52)

Here, dWt is the derivative of theWiener process (i.e.,

Brownian motion; see Gardiner 2004), E is the evapo-

ration, D is a mean large-scale, upper-level divergence,

and P is the precipitation. The stochastic term, jc has

amplitude sc and an autocorrelation time scale tac. In

the deterministic closure, (52), precipitation is entirely

determined by the value of q̂. The moisture adjustment

time, ttrue is set to 2 h. The effects of unaccounted in-

fluences on precipitation (e.g., variations in the vertical

structure) can be incorporated in the form of a stochastic

term within the precipitation closure:

P
stoch

5
(q̂2 q̂

c
1s

q
j
q
)

t
true

H(q̂2 q̂
c
1s

q
j
q
) , (53)

where jq is a stochastic term with amplitude sq and the

following evolution equation:

dj
q
52j

q

dt

t
ac

1
dW

t

t
ac

. (54)

The other model parameters with their values are

detailed in Table 2. The model is integrated using the

Euler–Maruyama scheme, with a time step of 3min for a

duration of ;12 weeks. This model captures the prin-

cipal statistics of tropical convection—including the re-

lationship between conditionally averaged precipitation

and q̂.

The instantaneous precipitation conditionally aver-

aged by q̂ (black curve in Fig. 6a) shows a sharp increase

near q̂5 q̂c (60mm); the slope of this curve is 0.5 h21 by

design. When the precipitation is averaged over time,

say on daily time scales, the sharpness of the pickup

reduces (blue curve in Fig. 6a); this smoothing is con-

sistent with the behavior noted in observations (Kuo

et al. 2018; Wolding et al. 2020—implicit in their Fig. 8).

The green dashed curve in Fig. 6a is the instantaneous

precipitation conditionally averaged by q̂, but generated

from the stochastic precipitation closure, (53). This curve

shows how the sharpness of the pickup can be reduced

even on fast time scales if themoisture threshold qc varies

stochastically due to neglected subgrid-scale influences

on the gridscale precipitation.

The sharp instantaneous precipitation curve with a

long linear regime is insensitive to the point of linear-

ization. The smooth daily precipitation curve and the

instantaneous precipitation curve with a stochastic

threshold, in contrast, offer multiple points for linear-

ization—a few of which are marked by red stars in

Fig. 6a. When conditionally averaging by daily aver-

aged q̂, each bin can contain varying fractions of pre-

cipitating grid cells (Fig. 6b). This fraction increases

from 0 to 1 as daily averaged q̂ increases. This changing

fraction of precipitating grid cells influences the ad-

justment times computed using (44). Figure 6c com-

pares the adjustment times calculated using (44) and

using the definition of tave from (48). The t values

computed using these two methods differ slightly, but

show the same general trend. The computed t values

tend to converge to the true built-in adjustment time

ttrue, as the fraction of precipitating grid cells tends

toward 1, and as the influence of the nonprecipitating

state diminishes. The fraction of nonprecipitating grid

cells, f, explains why the computed adjustment time

varies with the base state of linearization (Adames

2017), and why applying (44) to climate model output

(Jiang et al. 2016) can yield considerably longer adjust-

ment times than the APE removal time scales built into

the model cumulus parameterization scheme. Note that

an effect equivalent to spatiotemporal averaging can

also be introduced at the fast temporal and small spatial

scales, if factors besides q̂ influence precipitation. These

factors can be represented with a stochastically varying q̂c.

TABLE 2. Parameters of the stochastic model in section 4.

Quantity Description Value

E Surface evaporation 0.15mmh21

D Mean upper-level divergence 7.2 3 1023 h21

ttrue Moisture adjustment time 2 h

tac Autocorrelation time in noise 1 h

sc Amplitude of stochastic

convergence

0.05 s21/2

sq Amplitude of stochastic moisture

threshold

3mm s1/2

q̂c Threshold moisture that triggers

precipitation

60mm
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From the arguments outlined in this section, we

expect that using coarse-grained data to estimate ad-

justment time scales will yield values much longer than

the underlying convective adjustment time scale. It is,

however, important to distinguish the time scale rep-

resenting the adjustment process from time scales

more representative of averaging artifacts. This raises

the question as to the optimal adjustment time scale that

should be used in climate models operating on grids

considerably coarser than our analysis scales (*104km2).

Purely deterministic convective parameterization schemes

might employ the longer apparent adjustment times. This

approach, however, implies the use of nonunique ad-

justment times that vary with the subgrid-scale non-

precipitating fraction, as suggested by (48). A more

straightforward way to handle the effects of neglected

subgrid-scale variability is to use the short adjustment

time, ttrue, in conjunction with a stochastic precipitation

closure (e.g., Lin and Neelin 2003). This is consistent

with the notion that a single time scale characterizes the

convective response, but its influence on the gridscale

properties can be altered by unaccounted subgrid-scale

fluctuations.

c. Temporally averaging the P–BL relationship

In Fig. 7, the left panel compares the P–BL relation-

ship with precipitation–column relative humidity (P–r)

relationship. These figures were constructed using the

same ERA-Interim and TRMM datasets introduced in

section 2. The precipitation increase in the P–BL rela-

tionship is abrupt, when compared to the smoother in-

crease seen in the P–r relationship. The maximum value

of conditionally averaged precipitation in the P–BL re-

lationship (;5mmh21) is also larger than in the P–r

relationship (;2mmh21). Estimates of adjustment time

using these relationships will remain robust when using

the linear portion of the curves. The P–BL relationship

has a longer linear portion, and a smaller ‘‘foot’’ re-

gion: the smooth portion connecting the linear portion

to nonprecipitating points. The P–r relationship, in

contrast, has a smaller linear portion. So estimates of

adjustment time scales from the P–r relationship will

run into issues of robustness, as demonstrated in

sections 6a and 6b.

In the right panel of Fig. 7, the instantaneous P–BL

relationship—so called because the ERA-Interim and

TRMM 3B42 samples are nominal snapshots—shows

the longest linear range. The length of this linear portion

of the P–BL relationship clearly recedes with time av-

eraging. With only four samples available per day, the

effects of averaging are apparent only for intervals

longer than 5 days (20 samples). The curvature near the

‘‘foot’’ region increases substantially as the linear por-

tion of the P–BL relationship is completely averaged

away for the 10-day and monthly time scales. Therefore,

estimates of adjustment times, even when using the

P–BL relationship, are sensitive to temporal averaging.

Using near-instantaneous or short time-interval (hourly

or less) data is expected to provide more accurate esti-

mates of convective adjustment time scales.

It is interesting to consider why the P–BL relation-

ship exhibits a sharper pickup than the P–r relation-

ship. Column relative humidity r does not necessarily

have a one-to-one relationship with BL, so condi-

tionally averaging on r includes points with different

values of BL. This effect can be interpreted as a con-

sequence of using a stochastic r threshold for precip-

itation. The stochastic effects enter through variations

present in BL that affect precipitation, but are not

tracked by r. The result—as in the case of temporal

averaging—is an increase in the curvature near the

foot region.

FIG. 6. (a) Conditionally averaged precipitation from a stochastic model of column-integrated moisture (see main text). Conditional

averaging using instantaneous precipitation generated using a deterministic moisture threshold (black), a stochastic moisture threshold

(green dashed line), and daily averaged precipitation using the deterministic precipitation threshold (blue). The red stars denote different

reference values of CWV (q̂). (b) The fraction of precipitating grid cells in the bins with a given reference q̂ value. (c) The convective

adjustment times measured numerically using (44) and computed analytically using (48) for each reference q̂ value. The true adjustment

time, built into the model precipitation closure, is indicated by the dashed horizontal line. Note the different y-axes ranges in (b) and (c).
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7. Summary and discussion

a. Summary

The empirical precipitation–buoyancy relationship

exhibits a substantial range over which it is approxi-

mately linear. Linearizing analytic expressions for

this buoyancy in terms of equivalent potential tem-

perature or moist enthalpy yields a relationship be-

tween precipitation perturbations and corresponding

perturbations in thermodynamic properties of the bound-

ary layer and the lower free troposphere (free troposphere

below the freezing level). These precipitation sensitivities

are expressed as time scale parameters, although the way

these parameters combine to yield actual time scales

depends on a number of interactions. Tropical pre-

cipitation is more sensitive to lower-free-tropospheric

temperature perturbations—with an associated time

scale parameter ;3 h—than to equivalent lower-free-

tropospheric moisture or boundary layer moist enthalpy

perturbations, with time scale parameters ;11h. The

differences in these sensitivities are attributed to the

physical pathways through which each thermodynamic

perturbation affects buoyancy. Temperature fluctua-

tions affect convection through two pathways (change in

undilute buoyancy and dilution), versus the one pathway

available each for lower-free-tropospheric moisture (di-

lution) and boundary layer moist enthalpy effects (change

in undilute buoyancy).

A simple precipitation closure (q–T closure) that is

suitable for usewith both simple, linearized and nonlinear,

intermediate-complexity tropical models is constructed

from the empirical relationships. The q–T closure is used

to examine how column-integrated moisture (q̂) and

temperature (T̂) perturbations are consumed by convec-

tion. Both perturbations are consumed at the same fast

time scale (;2h), and are relaxed to one among a con-

tinuum of adjusted states. The difference in convection’s

sensitivity to moisture versus temperature decides which

adjusted state a given perturbation is relaxed to. These

adjusted states are constrained such that in a relative

sense: moist adjusted states are more stable and dry ad-

justed states are more unstable. Previous estimates that

arrive at long moisture adjustment times may be at-

tributing convective adjustment to regimes not actively

experiencing adjustment. Increases in the fraction of

nonprecipitating samples in the averaging interval is

shown to lengthen adjustment times. This effect can be

particularly acute when using spatiotemporally aver-

aged data to estimate adjustment times, but can also

result from neglected environmental influences on

precipitation.

b. Implications for convective quasi equilibrium

The empirical buoyancy-based framework constructs

an analog (BL) for similar buoyancy-based measures

of convective instability in cumulus parameteriza-

tion schemes; for example, the cloud work function

(Arakawa and Schubert 1974) or CAPE (Zhang and

McFarlane 1995; Neale et al. 2008). Observations (AN18;

Schiro et al. 2018) suggest that BL is consumed—with

ensuing precipitation—when it exceeds a threshold.

These empirical results are consistent with the QE

FIG. 7. (left) The relationship between precipitation conditionally averaged by BL (solid red scatter), and by

column relative humidity (starred blue line). BL varies on the bottom x-axis, while column relative humidity varies

on the top x-axis. (right) A zoomed-in view of the precipitation–BL relationship illustrating the effects of time

averaging. The number of available samples for each interval are indicated within parentheses. In both panels, the

black line has slope a (as in Fig. 3).
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hypothesis for deep convection (Arakawa and Schubert

1974; Emanuel et al. 1994; Neelin et al. 2008; Yano and

Plant 2012). A number of studies have recognized that

QE is a continuum of states (Arakawa 2004), set by

trade-offs between the influence of temperature and

moisture profiles on conditional instability. These ef-

fects have been quantified in a variety of ways in ob-

servations and models (Kuang 2008a; Neelin et al.

2009; Holloway and Neelin 2009; Sahany et al. 2012;

Raymond and Herman 2011; Raymond et al. 2015; Kuo

et al. 2018; Sessions et al. 2019). It is by now quite clear

that the diluting effects of entrained subsaturated air

must form a central ingredient (Neale et al. 2008;

Zhang 2009) in the buoyancymeasure being consumed.

The analytic expressions (in section 5) show that the

same sensitivity parameters that combine to govern the

adjustment time scale also determine the QE line in the

moisture–temperature plane. They clarify that the QE

state does not correspond to a particular value of sub-

saturation. This is because temperature effects enter

buoyancy by not only modifying the ambient saturation,

but also by modifying the ambient thermal stratification.

Column relative humidity is therefore a suboptimal mea-

sure of the thermodynamic environment for evaluating

precipitation relations.

c. Entrainment and mean state degradation

It is well known when entrainment is increased in

climate models, the precipitation variance increases at

the expense of mean state departures from observations

(Mapes and Neale 2011; Kim et al. 2011, 2012). This

property of climatemodels can be interpreted within the

empirical buoyancy-based framework. In this frame-

work, increasing the entrainment (and dilution) is tan-

tamount to reducing wB. As discussed in section 5a, this

change increases the influence of ambient subsaturation,

and decreases the influence of stratification on BL.

The large variance of the free-tropospheric moisture

can therefore be translated into increased precipitation

variance. In cumulus parameterization schemes, buoy-

ancymeasures such as CAPE or cloud work function are

adjusted to a reference value close to zero. To satisfy the

condition, Bc 5 0, environments with no entrainment

(wB5 1)must attain lower-free-tropospheric convective

neutrality (ueB 5 ueL* ), whereas environments with heavy

entrainment (wB 5 0) must saturate the lower free tro-

posphere (u1eL 5 0). Therefore, as the entrainment pa-

rameter is varied from minimum to maximum values,

the mean state, that is, the QE state to which convection

adjusts the precipitating environment, correspondingly

varies between neutral lapse rates and saturation in the

lower free troposphere. Modifying entrainment can

alternatively be viewed as increasing tq, and thereby

altering the slope of the QE line in Fig. 4. The same

external perturbation is therefore adjusted to very dif-

ferent points on the QE line, depending on the value of

entrainment.

Past work modifying entrainment in climate models

(Kim et al. 2012) has also demonstrated trade-offs in

variance between the convectively coupled Kelvin wave

and the MJO. Several models simulate strong Kelvin

wave variability and little MJO variability, and vice

versa (Lin et al. 2006; Hung et al. 2013). Furthermore,

several studies have found that models that simulate

strong MJO variability exhibit more humid mean states

(Kim 2017; Gonzalez and Jiang 2017). The MJO is

thought to emerge frommoisture fluctuations (Raymond

2001; Raymond and Fuchs 2009; Sobel and Maloney

2013; Adames and Kim 2016), and Kelvin waves from

temperature fluctuations (Khouider and Majda 2006;

Raymond and Fuchs 2007; Kuang 2008b; Herman et al.

2016). In the buoyancy framework, the degree of en-

trainment controls the ease with which precipitation can

be triggered bymoisture versus temperature fluctuations;

precipitation is more easily triggered by temperature

fluctuations when entrainment is small and vice versa.

The buoyancy framework developed here, therefore,

offers a starting point for future explorations related to

entrainment-induced trade-offs in MJO–Kelvin wave

precipitation variance.

d. Adjustment-based closures and their applicability

The adjustment to QE occurs in strongly precipitat-

ing conditions, that is, in environments where BL $ Bc.

Under these conditions, positive buoyancy fluctua-

tions are damped rapidly—as also attested to by ob-

servational studies (Masunaga 2012; Hohenegger and

Stevens 2013). However, as seen in Fig. 4, the QE

line is only the boundary separating convectively

damped and undamped tropical environments. The

undamped environments include dry, subsiding re-

gions that pervade much of the tropics and sit away

from QE. In such regions, the dominant time scales

are controlled by other processes (Masunaga and

Mapes 2020): radiatively induced subsidence, gradual

moistening through shallow and congestus clouds,

advective transport and surface fluxes, for which it

may not be meaningful to speak of convective ad-

justment time scales.

It is worth highlighting that the adjustment process

here is estimated from conditional mean precipita-

tion, and that there will always be fluctuations away

from QE, arising from both variations in large-scale

dynamical transports and fluctuations in the convec-

tion itself. These variations from QE yield impor-

tant qualities such as the probability distribution of
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precipitation accumulations, intensities, durations,

and clusters (e.g., Stechmann and Neelin 2014; Neelin

et al. 2017; Martinez-Villalobos and Neelin 2018,

2019; Ahmed and Neelin 2019). The adjustment time

scales are important to the amplitude of such fluctu-

ations and to the resulting precipitation-related dis-

tributions. In climate models, these fluctuations can

be captured with prescribed stochastic variability in

cumulus parameterization schemes (Lin and Neelin

2003; Plant and Craig 2008; Khouider et al. 2010;

Hagos et al. 2018). Moreover, the effects of spatio-

temporal averaging on precipitation statistics sug-

gest that the stochastic variability must scale with

the horizontal grid size, precluding the need for spa-

tiotemporally varying adjustment time scales in cli-

mate models.

The results in this study also highlight the differ-

ence between sensitivity of convection to a particular

thermodynamic forcing, and the time scale charac-

terizing the convective response. Inferring one quantity

from the other must account for distorted causality be-

tween forcing and adjustment (Mapes et al. 2019). The

time scale of convective adjustment will tend to be

dominated by the more sensitive variable, that is,

temperature. Neglecting temperature contributions to

precipitation adjustment therefore produces longer

estimates for tc. Neglected temperature contributions

also imply neglected precipitation variance—particu-

larly in spatiotemporal windows that host convectively

coupled Kelvin and gravity waves. It is nevertheless

interesting to consider situations in which the temper-

ature contribution to precipitation adjustment can be

justifiably omitted. One obvious possibility is under the

constraint of WTG: when temperature perturbations

are erased by gravity waves with either infinite (Sobel

and Bretherton 2000; Sobel et al. 2001) or finite phase

speeds (Raymond and Zeng 2005; Wang and Sobel

2011; Daleu et al. 2015). The latter case is particular

interesting when considering how the short, but finite,

gravity wave time scale will interact with the similarly

short time scale parameters governing the temperature

and moisture response to convection. A related follow-

up study will use a simple, linearized model of tropical

dynamics to explore how the constraints of QE and

WTG interact with each other.
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APPENDIX

Vertical Structures of Moisture and Temperature

Figure A1 shows the first EOFs of moisture and temper-

ature variations computed from a radiosonde time series.
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