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ABSTRACT

Precipitation clusters are contiguous raining regions characterized by a precipitation threshold, size, and the

total rainfall contained within—termed the cluster power. Tropical observations suggest that the probability

distributions of both cluster size and power contain a power-law range (with slope ; 21.5) bounded by a

large-event ‘‘cutoff.’’ Events with values beyond the cutoff signify large, powerful clusters and represent

extreme events. A two-dimensional stochastic model is introduced to reproduce the observed cluster dis-

tributions, including the slope and the cutoff. The model is equipped with coupled moisture and weak

temperature gradient (WTG) energy equations, empirically motivated precipitation parameterization,

temporally persistent noise, and lateral mixing processes, all of which collectively shape the model cluster

distributions. Moisture–radiative feedbacks aid clustering, but excessively strong feedbacks push the model

into a self-aggregating regime. The power-law slope is stable in a realistic parameter range. The cutoff is

sensitive to multiple model parameters including the stochastic forcing amplitude, the threshold moisture

value that triggers precipitation, and the lateral mixing efficiency. Among the candidates for simple analogs of

precipitation clustering, percolation models are ruled out as unsatisfactory, but the stochastic branching

process proves useful in formulating a neighbor probability metric. This metric measures the average number

of nearest neighbors that a precipitating entity can spawn per time interval and captures the cutoff parameter

sensitivity for both cluster size and power. The results here suggest that the clustering tendency and the

horizontal scale limiting large tropical precipitating systems arise from aggregate effects of multiple moist

processes, which are encapsulated in the neighbor probability metric.

1. Introduction

Tropical clouds display a pronounced proclivity to

clump together in space. This clumping can extend

across multiple spatial scales and lead to coherent pre-

cipitating regions or organized convection, spanning

scales from O(1) km2 (a cloudy updraft) to O(105) km2

(a supercluster). Numerous causal pathways can lead

to organized convection. Spatial coherence in the dry

dynamics—zonal mean ascent (Held and Hou 1980),

synoptic vortices (Charney 1947; Eady 1949), tropical

waves (Matsuno 1966), etc.—can directly translate to

coherence in the ensuing precipitation. Mechanisms

internal to moist convection also promote organization.

Precipitation-induced cold pools (Zuidema et al. 2017)

trigger new convection in the immediate neighborhood

(;100km) of extant precipitating systems (Tompkins

2001; Feng et al. 2015; Torri et al. 2015). Gravity waves

induced by the wiggles in vertical diabatic heating profiles

(Mapes 1993; Fovell 2002; Fovell et al. 2006; Tulich and

Mapes 2008; Lane and Zhang 2011) favorably modify

areas surrounding a precipitating region (;1000 km).

Cloud-permitting models—in certain regimes—allow

radiative–convective instabilities to generate spatially

coherent regions (;1000km) of moist air (Bretherton

et al. 2005; Emanuel et al. 2014; Wing et al. 2018), and

associated convection. One or several of these mecha-

nisms can act in concert to produce the observed sta-

tistics of organized convection.

In this study we seek to understand the primary

mechanisms that govern convective organization through

the statistics of precipitation clusters, which are defined

as spatially contiguous regions precipitating above a

specified threshold. These clusters are characterized by

their size and the cumulative precipitation they enclose.

The latter quantity is presented in units of power and is
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therefore termed the ‘‘cluster power.’’ In this study we

will primarily concern ourselves with the probability

density functions (pdfs) of the cluster size and power.

These cluster pdfs follow a power law spanning several

orders of magnitude before encountering a ‘‘cutoff’’ at a

large value of size or power (Peters et al. 2009, 2012; Teo

et al. 2017; Quinn and Neelin 2017a,b, hereafter

QN17a,b). The pdfs for related quantities: cloud sizes

(Cahalan and Joseph 1989; Neggers et al. 2003; Wood

and Field 2011) and spatiotemporal precipitation clus-

ters (Traxl et al. 2016) appear to belong to the same

family of distributions. This family can be approximately

described by the function p(x):

p(x); x2t exp

�
2

x

x
L

�
, (1)

where x represents either the cluster size or power andp(x)

is the pdf of x. Parameters t and xL are the slope of the

power law and the cutoff, respectively, and together con-

trol the incidence of large, powerful clusters. Note that x is

free to have any units, but xLmust have the same units as x.

When x specifically denotes the cluster area a or the

cluster power c, the following expressions follow from (1):
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Here, aL and cL refer to the large-value cutoffs in the

distributions of precipitation cluster area and power,

respectively. We will hereafter use xL to collectively

refer to both aL and cL.

Instantaneous precipitation fields from the Tropical

Rainfall Measuring Mission (TRMM) 3B42 (Huffman

et al. 2007) yield estimates for the slopes of the cluster

size and power pdfs to be t ; 1.7 and t ; 1.5, re-

spectively (QN17a; Teo et al. 2017). Slightly higher es-

timates (t ; 2) appear for cluster sizes computed using

the TRMM Precipitation Radar swaths (Peters et al.

2009, 2012). The mean hxi of the distribution (1) de-

pends on both xL and t. For the typical observed values

of t (1, t , 2), xL � hxi. For cluster area distributions,
aL can be interpreted as the horizontal scale beyond

which the probability of occurrence begins to decrease

strongly. This scale corresponds to precipitating systems

larger than the typical mesoscale convective system

(MCS; Houze 2004), and likely describes spatially con-

nected MCSs, variously referred to as superclusters

(Mapes and Houze 1995) or superconvective systems

(Chen et al. 1996; Yuan and Houze 2010). In this sense

aL quantifies the degree of organization of a sample of

precipitation clusters. To get a sense of the large hori-

zontal scale associated with aL, consider its typical value

;5 3 105 km2 (QN17a), which is 100 times greater than

the median values of MCS areas reported in Mohr and

Zipser (1996).

Shifts in xL (both aL and cL) therefore highlight

changes to the frequency of large and powerful pre-

cipitating clusters, and are interpreted as changes to

extreme event distributions. For instance, QN17a and

QN17b presented evidence of cL increases in future

warmer climates using end-of-century climate model

output that translated to greater than a tenfold jump in

the frequency of the most powerful precipitating events.

This finding is consistent with studies reporting an in-

creasing rain contribution from organized convection

in a warming climate (Tan et al. 2015b; Pendergrass et al.

2016). It is imperative to understand factors governing

xL, given the destructiveness of organized convection

(Schumacher and Johnson 2005). QN17a and QN17b

did not report a significant change in t with future

warming, suggesting that t is more robust than xL. The

reasons why xL is more sensitive to parameter changes

than t will be addressed in this study.

The pdfs of rain accumulations (cumulative precipita-

tion across a single event) are similar to cluster power

pdfs. Accumulation pdfs are distributed according to (1)

with t ; 1.5 and exhibit shifts in the accumulation cutoff

with future warming (Neelin et al. 2017). Stochastic pro-

totypes (Stechmann andNeelin 2011, 2014) can reproduce

the observed accumulation pdfs, and thereby help inter-

pret the anticipated changes with global warming. Similar

prototypes for the observed precipitation cluster area

and power distributions are, however, absent. A two-

dimensional version of the stochastic moisture equa-

tion was introduced by Hottovy and Stechmann (2015,

hereafter HS15) to explain the observed background

spectrum of tropical precipitation. HS15 documented the

presence of precipitation clusters in their model and

noted a value of t ; 1.17 for their cluster size distribution

slope, but did not provide details about cluster power pdfs.

Our principal aim in this study is to explain the observed

pdfs of cluster size and power, and consequently, identify

the physical processes relevant for tropical convective

organization. To this end, we present a stochastic model

motivated by HS15, and equipped with additional physics

relevant for the tropical atmosphere, including dry static

energy, water vapor and condensate equations. The de-

terministic elements of the model follow the thermo-

dynamic equations in the Quasi-Equilibrium Tropical

Circulation Model (QTCM; Neelin and Zeng 2000,

hereafter NZ00), which are reduced using the weak

temperature gradient approximation (WTG; Sobel and

Bretherton 2000; Sobel et al. 2001).
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The basic features of model construction are de-

scribed in section 2. Section 3 contains details of the

numerical implementation. Section 4 includes a pre-

liminary look at the precipitation cluster statistics from

the model, which bear close correspondence to the ob-

served cluster statistics. The model is then interrogated

with parameter perturbation experiments in section 5,

which reveal that xL is sensitive to multiple model pa-

rameters. Mechanism denial experiments (section 6)

shed further light on the relevant physical pathways

controlling xL. Connections to the site percolation

model and its regime of relevance are highlighted in

section 7. Section 8 presents analogies between pre-

cipitation cluster growth and a class of idealized models

called the stochastic branching process. These analogies

help devise a neighbor probability metric: the average

number of precipitating regions that arise in the neigh-

borhood of an existing precipitating region. Section 8

further shows how that this metric can explain the

multiparameter dependence of xL noted in section 5.

Section 9 showcases examples of ‘‘self-aggregating’’

precipitation clusters, akin to those reported in cloud-

resolving models (CRMs) under radiative–convective

equilibrium (RCE). Section 10 summarizes this work

along with its implications.

2. Model description

a. Temperature equation

Our aim here is to construct a minimal complexity

model to capture the essential statistics of precipitation

clustering. We begin with the vertically integrated

temperature equation, which is reduced using the

WTG approximation. This reduction transforms our

temperature equation to a diagnostic equation for the

horizontal divergence:

c
p

›T

›t
1M

s
= � v

1
5L

y
(P1Q

vc
)1F

s
2 j . (2)

Here, T is the domain-averaged, vertically integrated

temperature; Ms is the gross dry stability, v1 is the hor-

izontally varying component of horizontal wind, and cp
is the heat capacity of dry air. In contrast to traditional

treatments (Sobel et al. 2001), we impose a weaker form

of WTG by neglecting horizontal gradients in temper-

ature, but allowing T to evolve in time. We demand that

there be zero domain-mean divergence, so T depends

only on the net domain-mean fluxes. The supplement

contains a full derivation from the temperature equation

leading to (2). Table 1 lists all the model parameters.

The column fluxes due to latent heat release are parti-

tioned between convective (or strong) precipitation

P and the vapor to condensate conversion Qvc. The

net column flux Fs contains the effects of radiative

and surface sensible heat fluxes. In our construction,

j captures the variability arising from absent physics—

including stochastic column fluxes and neglected wave

dynamics in (2)—and obeys the constraint: j5 0. Ly is a

constant that converts P andQvc from units of millimeters

per hour to watts per square meter.

Manipulating (2) leads to an expression for the

divergence:

TABLE 1. Model parameters as used in the reference run. Parameters used in the perturbation experiments are indicated in the rightmost

column, along with the relevant section.

Model parameter Description Values Perturbed (section)

cp Heat capacity of dry air 1004 J kg21 K21 No

Dt Time step 300 s No

nx 3 ny Number of model grid points in x and y directions 256 3 256 No

Dx, Dy Grid spacing in x and y directions 19.54, 24.97 km Yes (section 7)

E Evaporation 0.14mmh21 Yes (section 5)

s Stochastic forcing amplitude for flux convergence 6 3 105Wm22 s1/2 Yes (section 5)

a21 Moisture adjustment time scale for strong precipitation 2 h Yes (section 5)

a21
cond Moisture adjustment time scale for weak precipitation 4 h Yes (section 5)

a21
vc Vapor-to-condensate conversion time scale 1 h Yes (section 5)

Dq Moisture diffusion coefficient 7.5 3 104m2 s21 Yes (section 5)

qc Moisture threshold for strong precipitation 60mm Yes (section 5)

qs Column saturation moisture content 75mm Yes (section 5)

tnoise Characteristic time scale for stochastic flux convergence 2 h Yes (section 6)

svort Stochastic forcing amplitude for vorticity 7.17 3 1022 s21/2 No

tvort Characteristic time scale for stochastic vorticity 12 h No

Ms0 Reference value of gross dry stability 3.14 3 104 kJm22 No

GM Change in Ms per unit change in qcond 4.86 3 103 kJm22 No

Mqp Change in moisture stratification per unit change in qy 0.53 No

Mqpc Change in condensate stratification per unit change in qcond 20.98 No
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In (3), the local horizontal divergence is dependent

on the local departure from domain-mean, column-

integrated fluxes—indicated by overbars—as well as a

stochastic component.

The primary governing equation in our model is the

vertically integrated water vapor (qy) budget:

›q
y

›t
5 (E1R

e
2P2Q

vc
)1M

qp
(= � v

1
)q

y

1M
qp
v
1
� =q

y
1D

q
=2q

y
, (4)

whereE andRe are the surface evaporation of water and

the re-evaporation of condensate, respectively. Here, qy
is in units of millimeters. The constant Mqp is derived

from fixed vertical structures of vertical velocity and

water vapor (see the online supplemental material).

Note that the full derivation of (4) follows the same steps

as in NZ00. Similar to HS15, a horizontal diffusion term

with coefficient Dq is present in (4). Diffusion arises

naturally in first-order closures of the subgrid scale tur-

bulent fluxes, and emphasizes the nearest neighbor in-

teractions. Such interactions are anticipated to enhance

the spatial coherency of the resulting precipitation

clusters (Bengtsson et al. 2013; Khouider 2014; Tan et al.

2015a) in the model. Note that diffusion will prove to be

an important, albeit simple, representation of the

physical mechanisms that encourage convection in the

neighborhood of existing convection. These nearest-

neighbor effects of diffusion also find use in the re-

lated ‘‘coarsening’’ model of Craig and Mack (2013).

Observed tropical precipitation clusters contain broad

areas of stratiform rain that originate due to the lateral

transport of condensate away from the convectively

active areas (Houze 1997). This role for stratiform rain

led us to anticipate a role for condensate transport in

shaping the model precipitation clusters. We therefore

include a prognostic equation for vertically integrated

mixing ratio of the condensate species qcond, complete

with advective and diffusive transport:

›q
cond

›t
5Q

vc
2P

cond
1M

qpc
(= � v

1
)q

cond

1M
qpc

v
1
� =q

cond
1D

q
=2q

cond
, (5)

where qcond is in units of millimeters. The constant

Mqpc—similar toMqp—is derived from assumed vertical

structures of the condensate mixing ratio and the verti-

cal velocity (see the online supplement). The cloud

condensate species, qcond, does not rain out as P; it can

be transported laterally and contribute to the weak,

large-scale precipitation Pcond. Note that Qvc con-

tributes to the latent release but Pcond does not. In the

standard parameter regime, we found that the salient

statistics of model precipitation clusters can be cap-

tured with the single moisture equation, (4). Sensi-

tivity tests—provided in the online supplement—show

that the condensate species only have a quantitative

effect on the cluster statistics. We nevertheless retain

the condensate equation in our model setup both for

the sake of completeness and because we parameter-

ize Ms (shown in the next subsection) based on the

amount of condensate in the column. This Ms pa-

rameterization plays an important role in preventing

runaway column moistening in regimes with large

parameter perturbations.

The prognostic equations, (4) and (5), are solved after

substituting for the divergence = � v1 from (3). This

substitution introduces a j dependence in both the

moisture and condensate equations. Note that the sto-

chastic term only enters (4) and (5) through the di-

vergence. Our main governing equations therefore

remain conservative; the stochastic term merely re-

distributes vapor and condensate without introducing

additional sources or sinks.

b. Parameterizations

1) STOCHASTIC FLUX

As is the norm in studies utilizing stochastic methods,

we must first decide the spatiotemporal character of our

noise field, j. The simplest approach here would be to

generate a set of random numbers that are completely

uncorrelated (or ‘‘white’’) in both space and time, as in

HS15. Atmospheric random variability that we aim to

capture with j, however, inherently possesses spatio-

temporal autocorrelation. We therefore choose to pre-

scribe temporal correlation to our noise. We will,

however, avoid prescribing explicit spatial correlation,

as this would be tantamount to controlling the spatial

character of the emergent physics. The spatial charac-

teristics of the precipitation field in our model, there-

fore, emerges from the other physical processes and not

the noise itself. We explore the effects of temporally

uncorrelated noise in section 6.

Another notable feature of our treatment of the

stochastic term is its role in the prognostic equations,

(4) and (5), as a multiplicative factor—through the

divergence term. This treatment ensures that the noise

is magnified in moist environments, and suppressed in

dry environments—ensuring that random perturba-

tions do not drive the vapor or condensate values

below zero.
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Wemodel j with a simple Ornstein–Uhlenbeck process

(Gardiner 2004), with an autocorrelation time scale tnoise:

dj52t21
noisejdt1 t21

noisesdW(t) , (6)

where s is the forcing amplitude of the stochastic term

and dW(t) is the derivative of the Wiener process (i.e.,

Brownian motion).

2) MICROPHYSICS

The model precipitation has two sources: convective

precipitation P and the ‘‘large-scale’’ precipitation due to

condensate removal Pcond. The latent heat release also

has two sources: P and the vapor to condensate conver-

sionQvc. These sources are computed by linearly relaxing

the water vapor qy to threshold values qc and qsat:

P5a(q
y
2q

c
)H(q

y
2 q

c
) , (7)

Q
vc
5a

vc
(q

y
2 q

sat
)H(q

y
2 q

sat
) . (8)

Here,H is the Heaviside function such thatH(x)5 1 for

x. 0 and H(x) 5 0 for x# 0, a21 is the relaxation time

that controls the convective precipitation strength, qsat is

the column-integrated saturation water vapor value, and

avc is the time scale with which water vapor above qc is

converted to condensate (we take avc 5 2a). Note that

(7) is a variant of the scheme introduced in Betts (1986)

and Betts and Miller (1986).

The large-scale precipitation Pcond is parameterized

as a fraction acond of the condensate qcond (we take

acond 5 0.5a). The large-scale precipitation Pcond can

also lose a fraction of its water substance to the un-

saturated environment via re-evaporation Re; this frac-

tion is proportional to the degree of vapor subsaturation.

These conditions are represented by

P
cond

5a
cond

q
cond

�
min(q

y
,q

sat
)

q
sat

�

R
e
5a

cond
q
cond

�
12

min(q
y
, q

sat
)

q
sat

�
.

Note thatRe is nonzero only when condensate is present

in a subsaturated environment.

3) GROSS DRY STABILITY Ms

The QTCM vertical structures arise from the as-

sumption that convection responds to large-scale forcing

with a single-signed, deep tropospheric temperature

adjustment. Moist convective response, however, also

involves the two-signed ‘‘second-baroclinic mode’’

heating profile (Mapes 2000; Majda and Shefter 2001)

due to the formation of stratiform rain (Houze 1982;

Johnson 1984; Schumacher et al. 2004). WTG is a less

reasonable approximation for responses involving the

second baroclinic mode (Majda et al. 2015). These de-

partures from WTG are, however, assumed to be con-

tained within the stochastic term j.

Another relevant role for the second-baroclinic mode

in our model is its effect on the ‘‘top-heaviness’’ of the

heating profile, which in turn affectsMs and the grossmoist

stability (Yu et al. 1998; Back and Bretherton 2006; Chou

et al. 2013). More specifically, Ms increases with the top-

heaviness of the vertical velocity profile, limiting decreases

in the gross moist stability which can otherwise lead to

runaway column moistening (Raymond et al. 2009). To

represent this effect, Ms is allowed to vary with qcond as

M
s
5M

s0
1G

M
q
cond

, (9)

where GM is the coefficient that determines the strength

of Ms increase for a unit change in qcond. The depen-

dence on condensate is designed to capture the change

in heating structure as stratiform rain contributions in-

crease. The assumed value of GM (Table 1)—along with

the vertical structure of condensate (Fig. S1 in the online

supplemental material)—translates to;15% increase in

Ms per millimeter of column-integrated condensate.

Note that whenmanipulating (2) to obtain (3), we ignore

the spatial variations in Ms due to the qcond dependence

in (9).

4) NET COLUMN FLUX FS

We split Fs in (3) into three components:

F
s
5F

ext
1F

qre
1F

cre
, (10)

where Fext includes contributions to the column flux

divergence from the combined radiative effects of the

tropospheric and surface temperature, and surface sen-

sible heat transports. In this model we hold Fext fixed in

time, but retain the option to allow latitudinal variations

that capture the effects of a large-scale, Hadley cell–like

circulation (see section 3c). The last two terms on the

right-hand side of (1), Fqre and Fcre, capture the contri-

butions to the column flux divergence from the radiative

effects of column-integrated water vapor (CWV) and

cloud content, respectively; Fqre and Fcre are set to zero

in the reference version of the run, but are used in sec-

tions 6a and 9 to demonstrate the effects of moisture-

and cloud–radiative feedbacks.

3. Numerical implementation

The stochastic differential equations, (4) and (5), are

solved on a discrete, two-dimensional lattice with peri-

odic boundaries in the x direction and fixed boundaries
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in the y direction, with numerics as in the full QTCM

(Zeng et al. 2000). Results here use 256 grid points along

each direction with grid sizes Dx 5 19.54 km and Dy 5
25 km unless otherwise specified. The domain extent

(;5000km3;6400km) represents the size of a typical

tropical ocean basin. The moisture and velocity vari-

ables reside on a staggered Arakawa C grid (Arakawa

and Lamb 1977) and evolve with a time step Dt 5 300 s.

The time derivatives in the model are numerically

solved using the Euler–Maruyama scheme, which is a

natural extension of the Euler forward difference

scheme for stochastic difference equations. Other

model specifications including standard parameter

values are detailed in Table 1. Advection by the total

wind is modeled using a first-order upwind scheme.

Diffusion is modeled using centered differencing in

the interior of the domain and one-sided differencing at

the boundaries.

a. Generation of the stochastic component j

The derivative of the Wiener process [dW(t) in (6)] is

white and Gaussian with zero mean, and a variance of

Dt. At every time step, a collection of 256 3 256 uni-

formly distributed pseudorandom numbers are con-

verted to a Gaussian distribution using the Box–Muller

transformation. A two-dimensional field of j is then

generated from (6) and its domain average is subse-

quently removed.

b. Generation of the wind field

The advecting wind field, v1 in (4) and (5) is decom-

posed into divergent and rotational components:

v
1
5 v

div
1 v

rot
, (11)

where vdiv is calculated by inverting the divergence field

in (3), using a Poisson solver with Neumann boundary

conditions at the northern and southern boundaries. The

Poisson solver computes the velocity potential, whose

gradient is the divergent wind. This wind field is subject

to the additional constraint of zero flow across the do-

main boundaries. For the sake of simplicity, we ignore

the spatial variations in Ms from (9) in this inversion

procedure.

Tropical convective elements are often embedded in

large-scale flow features dominated by the vorticity field

(Yano et al. 2009). Long-lived vortices and rotational

wind effects play an important role inmoisture transport

between the tropics and the subtropics (e.g., Pritchard

and Bretherton 2014). We therefore specify vrot in a

simple, sensible way to account for its possible effects on

precipitation organization. Since our model does not

have an explicit rotational wind field, vrot is specified as

an additional stochastic term. To emphasize the persis-

tent, large-scale nature of the rotational wind field, we

construct vrot from a stochastic vorticity field that has

both spatial correlation and temporal autocorrelation

(12h). Details of this construction are elaborated in

the online supplement. The rotational wind vrot is not

impacted by precipitation, and passively advects vapor

and condensate. A complete treatment of rotational

wind associated with the divergence field and the effects

of planetary rotation can introduce additional com-

plexity (e.g., Nolan et al. 2007; Held and Zhao 2008; Shi

and Bretherton 2014; Arnold and Randall 2015; Merlis

et al. 2016), and is left for future work.

c. Mock Hadley cell

Tropical precipitation organization can arise from both

the internal physics of moist convection as well as external

interactions with the large-scale circulation—for example,

the Hadley cell. To capture the possible large-scale ef-

fects on precipitation clusters, we prescribe a mock

Hadley cell [akin to the mock Walker cell in Kuang

(2012)]: with a spatially varying flux field that has posi-

tive values near the domain center and negative values

near the domain boundaries (see Fig. S2). This structure

is distinct from the randomly fluctuating component of

divergence and is introduced as a meridionally varying

external flux term Fext with zero domain mean. We

chose the meridional gradients in Fext to be small within

6208 latitude, so the cluster dynamics can be easily seen

in the near-equatorial region.

The mock Hadley circulation (specified via Fext) and

the rotational wind advection (specified via vrot) prove

sufficiently important to warrant their inclusion in the

reference run discussed in section 4. We discuss more

idealized versions of the model without these features in

section 5.

4. Precipitation cluster statistics: Reference run

The model runs discussed in this article have a 1-yr

duration. The first 10 days of the simulations include the

model spinup time and are excluded from all analyses.

The salient features of the cluster distribution statistics

are apparent from samples as small as 50 days, but a 1-yr

time period is retained to improve sampling. To facilitate

useful comparisons with statistics from satellite data, in-

stantaneous precipitation values are output four times

daily at 6-h intervals. At every output time step, contig-

uous model pixels with precipitation rate exceeding a

certain threshold are grouped into clusters. The cluster

size is defined as the number of pixels in a cluster, mul-

tiplied by the area of a single pixel (dx3 dy ’ 488km2).

The cluster power, defined as the cumulative precipitation
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within the cluster, has units of gigawatts (GW) as in

QN17a and QN17b. The parameters of the refer-

ence model run are tabulated in Table 1. Figure 1 is a

snapshot (day 73, hour 6) of the precipitation field in

the model. The spatial structure of the precipitation

field is not unlike images available from satellites (e.g.,

https://pmm.nasa.gov/gpm/imerg-global-image) over an

actively precipitating region of the tropical ocean. The

influence of the mock Hadley cell is visible in how the

model precipitation avoids the meridional boundaries,

preferring to hover near the central latitudes. Much

like in real precipitation clusters, swathes of non-

precipitating regions surround and highlight the aggre-

gated nature of large precipitating regions. Narrow

regions of intense precipitation cores (.4mmh21),

surrounded by wider, weakly precipitating regions are

also visible—quite similar to real precipitating clusters.

Note that longitudinal variations in the meridional ex-

tent of the precipitating regions in Fig. 1 are in part due

to the advection of dry or moist air by the rotational

wind (see Fig. S3). The use of a dynamically constrained

rotational wind—wherein the vorticity is constrained to

have near-zero values in our domain equator, produces

the same qualitative results (not shown).

Figures 2a and 2b are the model precipitation cluster

size and power distributions, respectively, presented

for four different precipitation thresholds, while Figs.

2c and 2d are the observed cluster size and power

FIG. 1. Snapshot of the precipitation field from a selected time step

(day 73, hour 6) in the stochastic model reference run.

FIG. 2. The pdfs of precipitation (a) cluster size and (b) cluster power from 1-yr-long stochastic model reference

run. The pdfs are constructed for different precipitation thresholds, which are indicated by different colors. The

slopes of the power law estimated by a linear regression over the power-law range of the curves tlin for different

precipitation thresholds are also indicated. The observed precipitation cluster pdfs from TRMM 3B42 data for

(c) size and (d) power fromQuinn andNeelin (2017a) are included for comparison. Note the differences in scales of

the axes, when comparing the model and observation pdfs.
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distributions from TRMM 3B42 data, as published in

QN17a. Themodel cluster pdfs bear a clear resemblance to

the observed pdfs. The exponents of the power-law range t,

that is, the slopes in these log–log figures, are computed

here using a linear regression over the power-law portion of

the curves. For the cluster size pdf in themodel, t ; 1.6 for

different precipitation thresholds, comparable to observa-

tional estimates by QN17a (;1.7) and T17 (;1.66). The

value of t for the model cluster power pdf is ;1.5 for dif-

ferent precipitation thresholds, again falling quite close to

the estimates from QN17a (;1.5) and T17 (;1.48). The

model cluster pdfs, similar to observed, exhibit a noticeable

departure from the power law at large values of cluster size

and power. The tails of the pdfs beyond the cutoff appear to

drop less steeply in the model, than in observations. The

cutoff in the model cluster pdfs is also more sensitive to the

precipitation threshold, than in the observed pdfs, pointing

to discrepancies between the model and observed pre-

cipitation distribution. This sensitivity to the precipitation

threshold could be a result of our simple convective and

microphysics parameterizations (section 2b), though it is

worth noting that this sensitivity is a documented feature in

even general circulation models (QN17a,b). Generally

speaking, the model is able to closely reproduce the sta-

tistics of observed tropical precipitation clusters, despite its

minimal complexity.

5. Parameter perturbations

As a measure of extreme event occurrence, xL is an

important parameter of the cluster distributions. Un-

derstanding the dynamics of xL shifts can help us an-

ticipate how the distribution of extreme events might

change in the future. The sensitivity of both t and xL to

quantitative perturbations in various model parameters

is now considered. We effectively introduce perturba-

tions to five different model parameters: s, E, qc, a
21,

and Dq. The relaxation times for strong precipitation

a21, vapor to condensate conversion a21
vc and weak

large-scale precipitation a21
cond are perturbed together,

such that a21
cond 5 2a21 and a21

vc 5 0:5a21; qc and qsat, the

threshold values for precipitation and vapor satura-

tion, respectively, are perturbed together such that

qsat 5 1.25qc. This parameter set was chosen to gauge

the robustness of the cluster pdfs to apparently im-

portant free parameters in the model. We conduct

these perturbation experiments—analogously to per-

turbed physics ensembles with climate models—to ask

whichmodel parameters show the greatest impact on the

cluster pdfs, setting the stage to ask why they do so. The

effects of entirely excising particular physical pathways

such as lateral mixing or moisture convergence–latent

heating coupling are explored in section 6.

The model runs for parameter perturbations are per-

formed in a more idealized setting, without the mock

Hadley cell and the rotational wind advection, to better

isolate causal relationships. The cluster pdfs that emerge

in this idealized setting have reduced values of xL, but

possess the same t value. The perturbations for all pa-

rameters except qc are performed by multiplying the

standard parameter value by a set of factors: [0.25, 0.5,

1.5, 2.0, 2.5]. The vapor threshold for strong precipitation

qc is perturbed by adding a set of factors, [210, 25, 5, 10,

15] in millimeters of CWV to its standard value (60mm).

Figure 3 presents the 1mmh21 threshold cluster pdfs for

the different perturbed runs, and additional 0.5mmh21

threshold cluster pdfs for the a21
c perturbation runs. In

Fig. 3, t is fairly robust to the introduced perturbations,

while xL displays dramatic shifts, in the same vein as those

documented inQN17a,b. There are also clear differences

between the magnitudes of the aL and cL shifts, de-

pending on the parameter being perturbed. Changes to s,

E, and qc produce substantial shifts in both aL and cL.

Changes to Dq and a21
c , however, appear to affect aL

more than cL. The 1mmh21 cluster power pdfs, in par-

ticular, are insensitive to the admitted range of pertur-

bations in a21
c ; relaxing the precipitation threshold to

0.5mmh21 increases the cL sensitivity to a21
c . Our goal

with the parameter perturbation experiments was to

identify the parametric controls on xL. Interestingly, all

the model parameters we tested for exert an influence on

xL, and therefore the scale of the precipitation clusters.

Aside from the grid scale, the only imposed length scale

in the idealized version of the model comes from the

diffusion parameterDq. The fact that the scales aL and cL
are not associated solely with Dq—but have multiple

controls—suggests that these scales are emergent prop-

erties that cannot be trivially tied to any single parameter.

The physics of what controls xLmust therefore be probed

in other ways (section 9).

Despite the multiple parametric controls on xL, we

wish to quantify the relative influence of each per-

turbed parameter on xL. To do so, we must, first,

however, measure xL. A direct measurement of xL
from the pdfs involves curve-fitting procedures that

can introduce additional sensitivities. We therefore, in-

stead, leverage a property that associates xL with the

moment ratio xM. The moment ratio of a distribution is

defined as the ratio of its second moment to its first

moment:

x
M
5

hx2i
hxi ,

where the operator h���i measures the expected value of

x from its distribution. For the particular functional form
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of the distribution given by (1), with t fixed, we have the

relationship (Peters et al. 2010; Neelin et al. 2017;

Martinez-Villalobos and Neelin 2018):

x
L
} x

M
. (12)

The value of t is fairly robust to parameter perturbations

(Fig. 3), a fact that then allows us to interpret changes

in the easily computable xM as corresponding linear

changes in xL, using (12). Figure 4 presents the per-

centage changes in xM for both cluster size (Fig. 4a) and

power (Fig. 4b), for the imposed parameter perturba-

tions. The parameter perturbations are normalized by

the reference value for each parameter allowing their

presentation on the same scale. Note that we use aM and

cM to indicate the moment ratios of cluster area and

cluster power, respectively.

For the same perturbation factor, changes in qc pro-

duce the largest shifts in xM (both aM and cM), followed

by changes in s. For both these parameters, cM shifts

by a greater magnitude than aM. For instance, an increase

in qc by 15mm increases aM by ;75%, but increases cM
by;150%. Physically, this sensitivity to qc perturbations

can be understood as changes to the moisture conver-

gence within the precipitating regime. For qc increases

that are not accompanied by compensatingMs increases,

FIG. 3. The cluster pdfs for (left) size and (right) power that result from perturbations to five different model

parameters: stochastic forcing amplitude s, evaporation E, CWV threshold for precipitation qc, diffusion co-

efficient Dq, and the moisture adjustment time a21. The parameters s, E, Dq, and a21 are perturbed with multi-

pliers of 0.25 (blue), 0.5 (red), 1.5 (green), 2 (magenta), and 2.5 (orange), and qc is perturbedwith additive factors of

210 (blue), 25 (red), 5 (green), 10 (magenta), and 15mm (orange). The black curve in each case indicates the

cluster pdf with the standard parameter value fromTable 1. Note that all the pdfs are for clusters constructed from a

1mmh21 threshold, except for a21, which has an additional set of pdfs for 0.5mmh21 threshold clusters. The slope

of the cluster pdfs for the reference case (black) is indicated by tref.

FIG. 4. The percentage change in (a) aM and (b) cM as a function of the perturbed variables on the x axis, each of

which is normalized by its standard value (detailed in Table 1). Note the slightly different scales on the y axis for

each panel.
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the moisture convergence—the (= � v1)qy term in (4)—

within the precipitating region also increases, leading to

upward shifts in the precipitation cluster area and power

cutoff. These numbers have implications for how the cluster

distributions might change in a future climate, since qc is

projected to increase with global warming (Sahany et al.

2014). For instance, the closest analog in our parameter

perturbation experiments to a 2-Kwarming is theqc change

from 60 to 70mm, which produces increases in aM and cM
by ;45% and ;80%, respectively.

Increasing s by 2.5 times increases aM by only;50%,

but increases cM by ;150%. The shifts of xM with in-

creasing evaporation E are less dramatic (doubling E

increases xM by ;1.5 times). Changing the diffusion

coefficient Dq produces about the same quantitative

changes to aM as E, but induces smaller cM changes

(doubling Dq only produces ;30% increase). The re-

sponse to a21 changes, as noted above, depends on the

precipitation threshold used to construct the clusters. The

use of 1mmh21 threshold produces subdued shifts in both

the size and power; with cM even showing a slight decrease

at large parameter increases (;215%change for 2.5 times

reference a21). Reducing the threshold to 0.5mmh21 in-

creases the xM sensitivity to a21, but cluster size (;100%

change in aM for doubled a21) remains more sensitive

than cluster power (;30% change in cM for doubled a21).

Overall, increments in qc and s increase the frequency

of large, powerful rain clusters. Increments in a21 and

Dq tend to increase the frequency of larger clusters

without them necessarily containing more rain—point-

ing to the appearance of wider areas with weaker pre-

cipitation. Increases in E produces commensurate

increments in the frequency of large precipitating sys-

tems with both increased size and power.

6. Process sensitivity

a. Experiment design

In this section, we examine the impacts of different

physical mechanisms on the cluster distributions. To this

end, we perform four primary mechanism denial ex-

periments as described below. We will also discern the

influence of rotational advection and the mock Hadley

circulation on the cluster statistics.

(i) Specified Divergence: The use of the WTG di-

vergence equation, (3), in the water vapor equa-

tion, (4), couples the divergence to precipitation. It

is fairly well known that feedbacks between mois-

ture convergence and latent heating can lead to

mutual intensification. For increasing CWV, the

moisture convergence increases if there is in-

adequate increase in the static stability Ms. This

effect can also be viewed as decreasing gross moist

stability (Neelin and Held 1987; Raymond et al.

2009; Inoue and Back 2015) with increasing mois-

ture. The moisture convergence–latent heat cou-

pling can therefore intensify precipitating regions

and prolong their lifetimes. The additional con-

straint of a domain-mean nondivergence forces a

compensating drying over nonprecipitating re-

gions to match the precipitation enhancement over

moist regions. Moisture convergence–latent heat-

ing coupling, therefore acts to impose a ‘‘rich get

richer’’ aka ‘‘wet gets wetter, dry gets drier’’ situ-

ation (Chou and Neelin 2004; Held and Soden

2006; Chou et al. 2009), which in turn can favor

convective aggregation. This coupling is switched

off in the model by enforcing the following defini-

tion of divergence, = � v1:

= � v
1
52

j

M
s

(13)

in the moisture and condensate equations, (4) and

(5), halting interactions between the latent heating

and the divergence field. Note that the divergence as

specified in (13) is now purely stochastic.

(ii) Diffusion Only: Diffusion was a critical physical

pathway in the HS15 model to generating precip-

itating clusters. Although diffusion can enhance

nearest neighbor effects, we are wary of the trivial

possibility that purely diffusive clusters dominate

our statistics.We test for this possibility by operating

the model under conditions where diffusion is the

only relevant physical process. We make the di-

vergence noninteracting and purely stochastic by

substituting (13) in (4) and (5). We also remove the

temporal autocorrelation by replacing (6) with jdt5
sdW(t), where dt 5 Dt in the numerical implemen-

tation. Our resulting stochastic divergence field is

purely white (uncorrelated) in both time and space,

similar to the noise field used in the HS15 model.

(iii) Diffusion Off: In our simple model, diffusion pro-

vides some nearest-neighbor connections in space

by flattening local maxima andminima in the CWV

and condensate fields. Although, we chose a stan-

dard value for our diffusion coefficient, Dq, such

that the diffusive spindown time of a large pre-

cipitation cluster (;105 km2) is;O(10) days, we do

anticipate a role for small-scale mixing in precipi-

tation clustering. We will test the importance of

diffusion by settingDq5 0 in both (4) and (5). Also

note that smaller diffusive effects due to the

numerical scheme exist even in the absence of

explicit diffusion. We use this experiment without
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explicit diffusion to illuminate the importance of

rotational advection. In fact, in a realistic regime, we

expect the rotational wind to provide substantial

‘‘stirring’’ that can enhance the moisture gradients

over which the small-scale diffusion operates (Eckart

1948; Villermaux 2019). We further elaborate on this

property of rotational advection in section 6c.

(iv) Interactive radiation: In the standard model runs,

we only considered the influence of spatially vary-

ing precipitation fluxes and neglect variations in the

column radiative fluxes. It is well-documented that

in cloud-permitting RCE domains, column radiative

effects, through positive feedbacks with the circu-

lation, marshal and maintain convection in an ag-

gregated state (Bretherton et al. 2005; Muller and

Held 2012; Emanuel et al. 2014;Wing et al. 2018). To

test the role of interactive radiation in our model

convective organization, we introduce a simple lin-

ear parameterization of Fqre and Fcre from (10):

F
qre

5 «
r
q
y
, (14)

F
cre

5 «
cloud

(P1P
cond

) . (15)

Here «r (2.0Wm22mm21) and «cloud (10.0Wm22mm21h21)

capture the radiative effects of clear-sky CWV and the

cloudy-sky effects of precipitation, respectively. The

value of «r is estimated from typical values of Fs differ-

ence between moist and dry regions (;60Wm22, see

Fig. 4a in Chou and Neelin 2003), divided by the typical

difference in their CWV values (;30mm, see Fig. 8 in

Neelin et al. 2009). The estimate of «cloud is less well

constrained, but we take it as the typical cloudy and clear

sky difference in column radiative flux convergence

[;100Wm22 for near saturation, see Fig. 10 inWing and

Emanuel (2014)], normalized by the precipitation in

near-saturated columns [;10mmh21, see Fig. 2a in Bao

and Sherwood (2019)]. Note that (14) neglects to account

for the subtleties of the vertical structure in moisture

perturbations (Emanuel et al. 2014; Beucler and Cronin

2016), but captures the relevant leading-order effects of

moisture–radiative interactions. According to (14) and

(15), regions with higher CWV and precipitation will

have larger values of Fs, leading to larger upper-level

divergence via (3). Equations (14) and (15) are also used

in section 9 to demonstrate how radiatively driven, self-

aggregating precipitation clusters can emerge in certain

parameter regimes.

b. Results from mechanism-denial experiments

Figure 5 compares the precipitation cluster statis-

tics that emerge from the four different experiments,

described above, in the presence of the both rotational

advection and the mock Hadley cell. The precipitation

clusters are created using the 1mmh21 threshold. The

reference case (Ref., black curves) is the run with the

standard parameter values detailed in Table 1. Shifts in

the moment ratio xM, and therefore the cutoff xL toward

higher values—with invariant t—are interpreted as in-

creases in the degree of organization and clustering. In

Figs. 5a and 5b, the Specified Divergence run (red

curves) sees reductions in aL and cL by factors of;5 and

;7, respectively. The Diffusion Off run (green curves),

by comparison sees reductions in aL and cL by factors of

;4 and;2.5, respectively. TheDiffusionOnly run (blue

curves) has by far the largest reductions in xL: by factors

of ;26 and ;21 for aL and cL, respectively. In fact, the

cluster power and size distributions for the Diffusion

Only run no longer possess a distinct power-law range.

The results here imply thatmoisture convergence–latent

heating feedbacks are the primary physical process

supporting the aggregation of convection in the standard

model configuration. Diffusive mixing aids the creation

of large precipitating clusters, but does not generate

adequate clustering by itself. The Interactive Radiation

run (orange curves) in Figs. 5a and 5b shows increases

FIG. 5. The pdfs of precipitation (a) cluster size and (b) cluster power from different mechanism-denial runs

described in section 6, indicated by different colors. The value tref is power-law slope of the reference case (Ref.;

black) fit over the power-law range using linear regression. Themoment ratios aM and cM have the same units as the

x-axis variable in each panel.
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in xL (by a factor of ;1.5). Interactive radiation, as pa-

rameterized in (14) and (15), is designed to amplify the

moisture convergence–latent heating feedbacks, and is

therefore capable of extending the scale of large pre-

cipitation clusters. Interactive radiation is, however, not

the leading cause of precipitation clustering in thismodel.

Figure 6 presents a set of additional diagnostics from

the runs discussed in Fig. 5, excluding the Interactive

Radiation run (which is only marginally different from

the Ref. case). Figures 6a–c can be directly compared to

Fig. 1. Figure 6a shows how the exclusion of moisture

convergence–latent heating interactions removes the

influence of the mock Hadley cell. The regions near the

northern and southern boundaries are now inhabited by

precipitation clusters, in contrast to Fig. 1. Visually, the

precipitation clusters in Fig. 6a are less clearly separated

by nonprecipitating regions than in Fig. 1. Figure 6b is a

snapshot from the Diffusion Off run that shows pre-

cipitation clusters more organized than those in Fig. 6a.

The precipitation rates in some regions, however, are

exceedingly high (in excess of 10mmh21). Without ex-

plicit diffusion to flatten the CWV gradients, the mois-

ture convergence–latent heating feedbacks introduce a

tendency to produce ‘‘gridpoint storms’’ for the pa-

rameter set used in the Diffusion Off run. These highly

concentrated areas of precipitation explain the slightly

smaller reductions in cL (;2.5) compared to aL (;4),

noted in the previous paragraph. The precipitation field

from the Diffusion Only run (Fig. 6c) visually confirms

the lack of large precipitation clusters, as inferred from

the cluster size and power distributions in Figs. 5a and

5b. Figures 6d and 6e present the two-point spatial

correlation curves for the CWV and the precipitation

field, respectively: another way of visualizing the dif-

ferences in xL between the different runs. The CWV and

precipitation fields both show the largest spatial corre-

lations (indicated by the e-folding distance in Fig. 6d) for

the Ref. run. The absence of both diffusion andmoisture

convergence–latent heating coupling have substantial

impacts on the CWV spatial correlation structure.

Comparing the two-point precipitation spatial correla-

tion structure between Specified Divergence and Dif-

fusion Off in Fig. 6d highlights an interesting behavior.

The spatial correlations are comparable for the first

50 km, but the tail of the Diffusion Off curve (in red)

decays more slowly at larger distances up to 250 km,

compared to the Specified Divergence curve (in blue).

This suggests that moisture convergence–latent heating

feedbacks, in conjunction with the large-scale features,

induce long-range correlations in the spatial correlation

structure of precipitation.

c. Roles for rotational advection and the mock
Hadley cell

All the runs discussed in section 5 included the

influence of the mock Hadley cell and the rotational

FIG. 6. The precipitation fields for (a) SpecifiedDivergence, (b)DiffusionOff, and (c) DiffusionOnly runs on day 73, hour 6, as in Fig. 1.

The two-point spatial correlations for the (d) columnwater vapor (CWV) and (e) precipitation (Precip.) for four different runs—including

the reference run (black)—are shown in (d) and (e). The colored dashes on the x axis in (d) mark the e-folding distances for the CWVfield

for each run. Note that (d) and (e) have different x-axis scales.
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advection. We now examine the individual impacts of

these processes on precipitation clustering. Figure 7

shows the impacts of turning off one or both of these

features—with (Figs. 7a,b) and without diffusion

(Figs. 7c,d). The Ref. case in Figs. 7a and 7b (black

curves) is repeated from Figs. 5a and 5b. When both the

rotational wind advection and the mock Hadley cell are

turned off (blue curves), there is a reduction in aM
(3.71 3 104 versus 1.29 3 104 km2) and cM (6.58 3 104

versus 2.65 3 104GW). This clarifies that the combina-

tion of both the rotational advection and the mock

Hadley cell act to increase xL. Comparing the black and

green curves in Figs. 7a and 7b show that the influence of

rotational advection—in the presence of explicit dif-

fusion—is only marginal (reductions in aL and cL by

factors of ;1.4 and ;1.2, respectively). Comparing

the black and red curves shows that the mock Hadley

cell is slightly more impactful (reductions in xL by a

factor ;2.2).

Figures 7c and 7d compare the relative impacts of the

mock Hadley cell and rotational advection in the ab-

sence of explicit diffusion. The green curve in these

figures is repeated from the Diffusion Off experiment of

Figs. 5a and 5b. In the absence of diffusion, the removal

of rotational advection results in a substantial decreases

in both aL and cL (by factors of ;7.2 and ;4.7, re-

spectively). Moreover, the power-law portions of the

cluster pdfs vanish (red curves in Figs. 7c and 7d), im-

plying that organized precipitation features are absent in

these runs, a fact that we also confirmed visually (not

shown). In contrast, the removal of themockHadley cell

is less drastic—resulting in xL reductions of ;1.7, com-

parable to its effects in the presence of diffusion (;2.2).

These results suggest that rotational advection—as an-

ticipated—assumes significance in the physics of pre-

cipitation clustering when explicit diffusion is absent.

These results underscore the role of a lateral mixing—or

more generally, a neighbor communication process—in

generating precipitation clusters. Precipitation intensi-

fication, acting on its own, without any form of lateral

mixing is unable to generate organized precipitation

clusters. Substantial diffusion effectively executes this

mixing (Fig. 5). When explicit diffusion is absent, rota-

tional wind advection aids lateral mixing (Fig. 7),

playing a role similar to the process of stirring-enhanced

mixing (Eckart 1948; Welander 1955), wherein the

CWV field is elongated in space to enhance the gradi-

ents over which the small-scale numerical diffusion

FIG. 7. As in Fig. 5, but for model experiments aimed at testing the relative influence of diffusion, the mock

Hadley cell, and rotational advection on aM and cM. Diffusion is (a),(b) present and (c),(d) absent. In all panels, the

blue curves indicate runs with rotational advection and without the mockHadley cell (ROTON,HCOFF), the red

curves indicate runs without rotational wind advection andwith themockHadley cell (ROTOFF,HCON), and the

magenta curves indicate runs without both the rotational wind advection and themockHadley cell (ROTOFF,HC

OFF). The black reference curves in (a) and (b) are repeated from Fig. 5, the green reference curves in (c) and

(d) are from the Diffusion Off run in Fig. 5. The value tref is the power-law slope of the reference case.
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operates. The rotational advection can therefore be

thought of as increasing the effective diffusivity of the

model (Lin et al. 2010).

The precipitation clustering in this model is governed

by two sets of physical processes: the first set acts to

increase the intensity and persistence of convection, and

the second set encourages precipitation in the neighbor-

hood of existing precipitation. The former set encom-

passes moisture convergence–latent heating feedbacks,

temporal persistence in the random divergence source,

and moisture– and cloud–radiative feedbacks. The latter

set includes diffusive mixing, whose efficacy can be en-

hanced by rotational advection.

7. Relationship to percolation models

Percolation models (Stauffer and Aharony 1992) are

useful null models for meteorological clusters—as ex-

plored in Peters et al. (2009). The simplest example of

this class of models is site percolation, for which sites

on a lattice are randomly filled or emptied with a

given probability p0, and the clusters that result from

the connected sites are evaluated. A domain with a

distribution of connected clusters is said to be perco-

lating if there exists at least one cluster that spans the

length of the domain in anydirection. The properties of the

cluster distribution are well-known for infinite-sized lat-

tices, around the p0 value for which the percolating cluster

first appears. At this critical value, the probability distri-

bution of the cluster sizes is a pure power law, that is, the

cutoff aL/ ‘. The slope of this power law for an infinite-

sized, two-dimensional square lattice is t; 2.05. It is worth

noting this slope can vary depending on the distance to

percolation: as a lattice model moves from a non-

percolating state toward percolation, its slope tends to

increase to t; 2.05 (Ding et al. 2014). Itmight be tempting

to interpret the observed precipitation cluster distribution

slopes as a function of the distance to percolation; butDing

et al. (2014) did not note a stable regime around t ; 1.5.

Percolation clusters also lack an inherent spatial scale

and rely on the grid size for scale. In such models, xL
would change with the grid size: an undesirable property

for quantities such as the horizontal scale of tropical

convective systems including MCSs and superclusters.

To test for this degenerate result we simply reran the

reference case (Ref.) with a halved grid size, that is,

Dx0 5Dx/2 andDy0 5Dy/2. The halved-grid-size case has
twice the s value from the reference case, in accordance

with central limit theorem. The Gaussian noise ampli-

tude in the larger grid should be smaller by a factor of
ffiffiffi
4

p
when compared to s in each of the four subgrids. The

results comparing the Ref. case with the halved grid-size

case are shown in Figs. 8a and 8b. Note that the Ref. case

is shifted vertically to overlie with the halved grid case to

establish the sameness of their slopes; this is equivalent

to a change in the normalization constant, which differs

due to the different minimum size or power associated

with the change in resolution. Figures 8a and 8b show

that the slopes t and the moment ratios xM for the two

cases vary by less than 10%. This lack of change when

compared to the factor-of-4 change in the grid size

shows that the cluster statistics are independent of the

grid size. This suggests that xL in our model is a property

of the physics and not the numerical grid. Figures 8c and

8d show runs from two different site percolation runs

(with p0 5 0.4 and p0 5 0.55, respectively). These cases

have t values that bracket the observed value (t’ 1.4 and

1.7), but with drastic differences in the cutoff. Note that

both t and xL in percolation models are controlled by

the single parameter p0 (Ding et al. 2014), such that

t steepens as p0 approaches the critical p0. Further in-

creases in p0 toward the critical value (’0.59), yield

t values that approach the percolation slope at criticality,

;2 (not shown). The clusters in the percolationmodel are

also sensitive to the grid size; decreasing the grid size by a

factor of 4 produces a corresponding change in xM by the

same factor. In other words there is no physical scale

corresponding to the cutoff in the percolationmodel. The

lack of a robust t value and sensitivity to grid size

therefore rule out the percolation model as a satisfactory

prototype for precipitation clusters.

There are, however, aspects for which information

from percolation models can be qualitatively relevant.

Finite-sized domains can percolate even in the physi-

cally based model. In other words, a domain-spanning

cluster can appear if the domain area ad is small enough

(ad & aL). In such situations, the relative frequency of

smaller clusters increases at the expense of larger clusters,

and leads to increases in t. In the online supplement

(Fig. S7), we showhow this effect can come into play even

in our model. It is plausible that these finite-sized effects

played a part in the large t values (;2) reported in Peters

et al. (2009), who sampled precipitation clusters in highly

moist environments within narrow satellite swaths. The

percolation model also serves as a foil to illustrate an

important property of the physical model.Whereas in the

percolation model, the cutoff simply shifts as grid size

changes, in the physical model the cutoff is independent

of grid size. In other words, in the physically basedmodel,

the cutoff is indeed a physical scale.

8. The stochastic branching process as an analog
for convective organization

In this section, we seek an alternative prototype to

percolation models that is both simple and yet contains
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features analogous to the physics of convective orga-

nization. One appealing candidate is the stochastic

branching process (SBP) or the Galton–Watson pro-

cess (Harris 1963; Kendall 1966; Athreya and Ney

2011). This process was first conceived of in work that

modeled the likelihood of family tree extinctions

(Watson and Galton 1875).

a. Background

The principle behind the SBP is straightforward. As-

sume that there exists a single ‘‘seed’’ at an initial time t0.

After the passage of an arbitrary time interval, the seed

branches out and gives rise to one or more ‘‘de-

scendants.’’ Each of these descendants in turn spawns its

own progeny, creating a sizeable family tree after a few

generations. Under these conditions, analytical forms

are available for the asymptotic size of the tree, that is,

a size large enough such that the number of new

additions is much smaller than the total size. The

parameters of this size distribution are dependent on

the distribution governing the number of branches

spawned out of any given seed. If we assume that this

‘‘branching probability’’ follows a Poisson distribution,

then we obtain the following distribution p0(s) for the

total size of the tree:

p0(s); s23/2 exp

�
2

s

s
L

�
, (16)

where s is the size of the tree. If l is the mean number of

branches per generation that characterizes our Poisson

distribution, then the cutoff sL is given by

s
L
5

1

l2 12 lnl
. (17)

Note that (16) is in the same form as (1). The derivation

of (16) relies on the assumption that the branching

probability is independent of the tree size or generation.

This derivation appears to be well known in the SBP

literature, but a brief sketch is provided in the supple-

ment for reference. Equation (16) is also not dependent

on the assumption of Poisson distribution. Other treat-

ments with different forms for the branching probability

also arrive at the same value of t [Vere-Jones 1977;

Alstrøm 1988; also see Sornette (2006) for more exam-

ples]. The cutoff sL in these cases, though still dependent

FIG. 8. (a),(b) As in Fig. 5, but comparing the reference case (red) with a case where the grid size in the model is

halved (blue). (c),(d) Comparison of the cluster size pdfs from two site percolation runs, with probabilities of

occupation p05 0.4 and 0.55, respectively, and both with the original grid size (red) and halved grid size (blue). The

reference line is shifted vertically so that the power-law portions of both the pdfs nearly overlie each other. Note

that this shift corresponds to a change in the normalization constant of the reference-case pdf.
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on the branching probability, differs from (17) in its

functional form. We will, however, for demonstra-

tion purposes, assume a Poisson distribution for our

branching probability. It is also worth noting that the

condition of asymptotic convergence implies that l, 1,

that is, there is a zero probability of a tree growing in-

definitely. The condition l $ 1 would imply a tree that

has a finite probability of growing indefinitely.

b. Mapping to cluster size and power distributions

We now elaborate the analogies between the SBP and

cluster growth. Precipitation clusters can be thought to

primarily grow by spawning precipitating regions adja-

cent to existing precipitation [e.g., as documented in

López (1978) and Cheng et al. (2018)]. The actual pro-

cess that facilitates this growth is immaterial and can

assumemany forms, including density currents (Tompkins

2001; Feng et al. 2015; Torri et al. 2015), gravity waves

(Mapes 1993; Fovell 2002), lateral spreading of strati-

form precipitation from a convective core (Houze 1997),

or lateral mixing by diffusion (HS15), aided by the ro-

tational wind (this study).

Each precipitating pixel that develops adjacent to an

existing precipitating pixel is thought of as a ‘‘branch’’ in

the SBP. Precipitation clusters are then analogous to

trees from the SBP, where the pixels in the interior are

the antecedents and the pixels on the cluster perimeter

are the newest members of the tree. This analogy is

graphically presented in Fig. 9, following the evolution

of a precipitation cluster from a single pixel, and the

analogous evolution of the branching process in the

inset on each panel. In Fig. 9, new precipitating regions

FIG. 9. A zoomed-in view of the evolution of a sample precipitation cluster over a time period of ;7 h, used to demonstrate analogies

between precipitation cluster growth and a branching process. Time increases from left to right in each row. One possible mapping to the

stochastic branching process is provided in the inset in each panel. The blue nodes of the branch represent precipitating pixels that are part

of the tree; the green nodes represent pixels thatmerge with the tree. The precipitating pixels are colored by their time of appearance, with

darker pixels arriving earlier. Note that this mapping only tracks cluster growth and does not account for precipitating pixels, which may

decay during cluster expansion.
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emerge from a precipitating pixel by ‘‘branching’’ out-

ward. In this mapping, l corresponds to the average

number of precipitating pixels that emerge adjacent to

an existing precipitating pixel, in a given time interval. If

real precipitation clusters grow by somemechanism akin

to the branching process, it would explain why the

cluster size distribution follows a power-law distribu-

tion—with slope 5 21.5—and also possess an expo-

nential cutoff. The precipitating pixel is also likely to

excite new nonadjacent precipitating points; these points

can grow by their own adjacent branching process be-

fore merging with the parent cluster. Since the expres-

sions in (16) and (17) are still valid for a small number of

mergers between trees, the parameters of the cluster

distribution will remain robust to mergers between

clusters.

As the precipitation cluster grows in two horizontal

dimensions, the branching is influenced by the number

of surrounding precipitating points. This imposes limits

on the number of branches that can spawn in each

generation, violating the assumption of independent

branching. This restrained cluster growth might explain

the slight deviation of the observed cluster size distri-

bution slope from 21.5 to a slightly steeper value

of 21.66 (QN17a; Teo et al. 2017). A similar line of

reasoning can be applied tomap the trees from the SBP to

cluster power increases. An arbitrary unit of precipitation

is considered to be a single branch. The cluster power can

branch out by spawning adjacent precipitation points—as

in cluster size growth—but also by precipitating harder

in existing points within the cluster. This branching can

therefore proceed in a higher-dimensional ‘‘precipitation

space’’ as opposed to the two-dimensional horizontal

plane for cluster size. This added degree of freedom for

cluster power branching might also explain why the ob-

served value of t is closer to 1.5 for cluster power distri-

butions, than for cluster size distributions.

We note that there are limits to the SBP–precipitation

cluster analogies with regard to cluster decay that are

worth highlighting. The connections between the pre-

cipitation clusters and the SBP are only valid in the

cluster growth phase. As the cluster–SBP relationship is

quantified here, preexisting branches cannot undergo

‘‘deaths’’ during the spawning process, when the cluster

is branching outward. This may not be a strong limiting

factor within growing clusters, as these interior ‘‘holes’’

can be reinitiated by neighboring pixels—so preexisting

branches can effectively persist longer than the time

scale of branching. The SBP as presented here also does

not address how the cluster size distribution would

change as the precipitation clusters stop growing and

begin to shrink. A similar stochastic ‘‘culling’’ process

might apply for cluster decay. We will, however, defer

these considerations to future efforts and proceed to test

the utility of the cluster–SBP analogs for our model.

c. Testing the applicability of the stochastic branching
process

One hitherto unexplained aspect of our cluster dis-

tribution is the sensitivity of the cutoffs xL to perturba-

tions in multiple model parameters (Figs. 3 and 4). If the

SBP is relevant to precipitation clustering, then the ex-

pression in (17) should be able to capture aspects of this

multiparameter dependence. To test for this possibility,

we first devise a nearest-neighbor probability metric lnn
intended to capture the average number of neighbors

spawned by a precipitating element, in a chosen time

interval. An accurate estimation of lnn would involve

tracking the relationship between several precipitating

pixels and the pixels that arise in their neighborhood

across multiple generations: a fairly cumbersome and

impractical exercise. We therefore choose a practical,

aggregate measure that captures some aspects of l from

the SBP. In our mapping (Fig. 9), a precipitating pixel

passes from current to previous generation when it first

attains 4 nearest neighbors—as it can no longer spawn

more neighbors. We suitably define lnn as

l
nn
5 �

4

z51

zp
b
(z) , (18)

where pb(z) is the probability that a precipitating pixel

spawns z neighbors. We use the following definitions to

estimate pb:

p
b
(1)5

n
3nn/4nn

N

���
Dt56h

,

p
b
(2)5

n
2nn/4nn

N

���
Dt56h

,

p
b
(3)5

n
1nn/4nn

N

���
Dt56h

,

p
b
(4)5

n
0nn/4nn

N

���
Dt56h

.

Here, n3nn/4nn is number of precipitating pixels that

transition from having 3 nearest neighbors to 4 nearest

neighbors, within a time interval Dt. The denominatorN

denotes the total number of pixels that remained active

(did not stop precipitating) during the considered time

interval. We base our value of Dt on the most typical

duration of observed convective systems (e.g., Machado

et al. 1998), but we found no qualitative changes to our

results upon varying the length of this time window

between 4 and 12h (not shown).

We can similarly approximate cluster power as

branching in its own precipitation space. Cluster power
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is not discrete like cluster area on a grid, but for purposes of

mapping to the SBP, we discretize the power using an ar-

bitrary precipitation rate. We postulate this discretized

power as a pragmaticmeasure andwewill test its utility for

analysis of the full model. Every new branch in the cluster

area space is also a new branch in the cluster power space,

we therefore use lnn as the basis for a similar nearest

neighbor probability metric for cluster power lp:

l
p
5

1

dPr

DPr
3nn/4nn

1DPr
2nn/4nn

1DPr
1nn/4nn

1DPr
0nn/4nn

N

����
Dt56h

, (19)

where DPr3nn/4nn is the total precipitation increase

during the 3nn/4nn transition. Parameter dPr is an ar-

bitrary amount of precipitation that was chosen to con-

stitute one ‘‘precipitation branch’’ (dPr 5 2.0mmh21),

such that lp , 1. lp simply tracks the average change in

precipitationwithin the transitioning pixels, during a time

interval ofDt, and discretizes this changewith an arbitrary
amount dPr to ensure that lp , 1.

We now use (18) and (19) to compute a neighbor

probability for each of the perturbed runs from section

4. We take the mean of these neighbor probabilities

across all the sampled 6-h intervals, and then use (17) to

reconstruct the cutoff for the cluster size and power.

This quantity is then multiplied by the size of one pixel

and the power contained in a single pixel precipitating at

dPr52mmh21, to convert sL for size and power to units

of square kilometers and GW, respectively. The xM
values for the different parameter perturbations dis-

cussed in section 5 are plotted against the cutoffs com-

puted using the neighbor probability metric in Fig. 10.

At first glance, lnn and lp appear to capture the variations

in xM across all parameter perturbations. The collapse

between aM and lnn (Fig. 10a) is more striking than the

collapse between cM and lp (Fig. 10b). However, lp still

captures features noted in section 5, such as the in-

sensitivity of the 1mmh21 cluster power to variations in

a21, and the larger changes in aM when compared to cM,

following Dq perturbations. The sensitivity of xL to mul-

tiple model parameters is therefore apparently reducible

to a single parameter (lnn for size and lp for power).

9. Radiatively driven convective self-aggregation

Under RCE, the radiative effects of water vapor and

clouds can drive the water vapor field to aggregate in

cloud-permitting models (Bretherton et al. 2005; Muller

and Held 2012; Jeevanjee and Romps 2013; Wing and

Emanuel 2014; Muller and Bony 2015). Our model—

also run under RCE—is capable of supporting self-

aggregating clusters, albeit in a different parameter re-

gime than the ones explored thus far. Note that for

consistency with the wider literature in this area, we will

FIG. 10. (a) Changes in aM from the parameter perturbation experiments (section 5), plotted as a function of the

cutoff computed from (17) using lnn from (18). (b) A similar plot for cM vs the cutoff computed using lp from (19).

See text for more details on lnn, lp, and the branching process. The black star denotes the reference-case aM and cM
in each panel, and the othermarkers denote the different parameters being perturbed.DA andDpow are the area of

a single pixel (’488 km2) and the power contained within a single pixel precipitating at 2mmh21 (’678GW),

respectively.
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use the terms ‘‘self-aggregation’’ and ‘‘self-aggregated

clusters’’ to denote clustering driven primarily by radi-

ative feedbacks. The clusters dominated by other feed-

backs of the moist physics are also—strictly speaking—

self-aggregating. We encourage the emergence of self-

aggregating clusters by directly perturbing the strength

of themoisture–radiative feedback «r in (14).We run the

model without the mock Hadley cell to ensure spatially

uniform conditions. We test the results of increasing «r

by factors of 5, 7.5, and 10, for two sets of runs: with

reference and reduced values of the stochastic forcing s.

Figure 11 shows the CWV field on day 365 of each run.

The runs with the standard value of «R in Figs. 11a

and 11b show a nearly homogeneous distribution of

CWV, corresponding to a homogeneous precipitation

cluster distribution, though the run with reduced s

(Fig. 11b) shows smaller spatial variability. Increasing «r
by a factor of 5 (10Wm22mm21) induces the onset of

FIG. 11. CWV field at day 365 for sets of runs with perturbations to the moisture–radiative feedback parameter

«r, with (left) reference stochastic forcing s from Table 1 and (right) reduced stochastic forcing s/2. Values of

«r (Wm22 mm21) for each run are shown in the panel titles.
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self-aggregation in the run with small s (Fig. 11d), that

is, the dry and moist regions are spatially well separated.

The run with reference s value (Fig. 11c) responds with

larger spatial variability but without a clear moist–dry

separation, though a noticeable dry patch is visible in the

southwest corner of the domain. Further increase in «r to

15Wm22mm21 induces the onset of self-aggregation in

the reference s run (Fig. 11e), but with the aggregated

state less coherent than its counterpart run with reduced

s (Fig. 11f)—which is visually reminiscent of clusters in

RCE channel models (Wing and Cronin 2016). Even

with «r set to 20Wm22mm21, the moist–dry separation

in the reference s case (Fig. 11g) is more diffuse than in

the reduced s case (Fig. 11h). The onset of the self-

aggregation regime in our model is therefore contingent

upon the relative strengths of the radiative feedbacks

and the random variability. The qualitative picture in

Fig. 11 is not affected by the presence of rotational ad-

vection, though the aggregated CWV field is more spa-

tially elongated (not shown). Examples of more exotic

variants of self-aggregation, driven purely by instabil-

ities in the nonstochastic version of the model are shown

in the online supplement (Fig. S9).

To assess the relevance of the self-aggregated regime

to the cluster distributions in our model, we present the

cluster pdfs in Fig. 12 for four of the runs with reduced s,

since the effects of self-aggregation are more apparent

in this set. The cluster pdfs for the run with «r 5
2Wm22mm21 show a power-law range with a cutoff

that is diminished, and consistent with the results of the

parameter perturbation experiments in section 4. The

cluster pdf with «r 5 10Wm22mm21—that had com-

menced self-aggregation in Fig. 11d—shows the same

value of t as our other reference cases, but with a less

clearly defined cutoff. The runs with the strongly self-

aggregated CWV field (green curves) have pdfs with a

noticeable peak ;2–5 3 104 km2 and ;7–8 3 104GW.

The runs with «r 5 15Wm22mm21 (blue curves) even

hint at two peaks in the cluster pdfs. These peaks

indicate a preferred scale for clusters in these runs, and

signal a departure from the canonical pdfs described by

(1). Our model must ostensibly reside in a ‘‘noise-

dominated’’ regime to produce cluster distributions that

match observations.

10. Summary and discussion

a. Summary

A two-dimensional stochastic model, part of a hier-

archy based on vertically integrated moisture, conden-

sate and WTG temperature equations, is introduced to

reproduce the observed precipitation cluster size and

power pdfs. The pdfs are characterized by a power law

with slope ;21.5 and a cutoff at large power or size.

The degree of organization, quantified here by the value

of the cutoff, is sensitive to the presence of moisture

convergence–latent heating feedbacks that preferen-

tially intensify the upper-level divergence over pre-

cipitating points, and weaken the divergence over

nonprecipitating points. The positive feedbacks be-

tween moisture convergence and latent heating, tem-

poral persistence in divergence, and spatial connectivity

via lateral mixing process collectively shape the statistics

of precipitation clusters. The lateral mixing is effectively

represented by diffusion, but in the absence of explicit

diffusion, other processes such rotational wind advec-

tion assume a similar function. Reductions in the sto-

chastic forcing and increases in the moisture–radiative

feedbacks yield aggregated clusters, comparable to

those observed in cloud-permitting RCE simulations.

The slope of the distribution is fairly robust in the pa-

rameter range explored in this study. The cutoff exhibits

sensitivity to multiple model parameters, although it is

independent of grid size, that is, it is a true physical

scale. This cutoff sensitivity is captured using a metric

that quantifies the likelihood of a precipitating pixel

FIG. 12. As in Fig. 5, but for the runs with the weak stochastic forcing shown in Fig. 11. The black («r 5
10Wm22 mm21), blue («r5 15Wm22 mm21), and green («r5 20Wm22 mm21) curves exhibit increasing degrees

of self-aggregation.
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emerging in the neighborhood of an existing pre-

cipitating pixel. This metric was inspired by apparent

connections between a stochastic prototype called the

stochastic branching process, and a mechanism that

captures how precipitation clusters might grow in space.

This branching process is also posited to explain why the

observed slopes of the cluster distributions lie close

to 21.5.

b. Relevance of the stochastic branching process

How strongly should we emphasize the connections

between the SBP and the physics of convective organi-

zation? We use apparent analogies between the two

systems to collapse the multiparameter dependence of

aL and cL in our model, although the SBP helps capture

variations in aL better than in cL. Strong connections

between the two systems also suggest an explanation for

the robustness of the cluster pdf slopes in the face of

parameter perturbations in section 4, and their observed

values (close to 21.5). The SBP thus appears to hold

promise as a prototype for how tropical precipitating

systems organize, but issues such as the lack of a direct

analog for cluster decay in the SBP are worth future

scrutiny. The mapping from physical model parameters

to the SBP parameter (mean number of branches per

generation) is also not obtained from first principles. A

theory to directly connect the physical cutoff scales to

the parameters of themoist processes remains desirable.

c. The emergence of the mesoscale

Tropical convective systems—excluding tropical cy-

clones—occupy a broad range of spatial scales. Even

MCS (systems.;103 km2 in area) are not characterized

a single distinguishing horizontal scale, but are com-

monly identified by their distinctive flow (Zipser 1977;

Moncrieff 1992; Mapes and Houze 1995) and heating

structures (Houze 1982; Schumacher et al. 2004). The

interesting scale-related question for such systems,

therefore, does not concern their typical size, but rather,

their largest attainable size. In precipitation cluster size

distributions, this quantity is closely related to aL; pre-

cipitation clusters can exceed aL in size, but do so with a

probability that drops rapidly. Our model cluster size

distribution, much like observed tropical clusters, has a

scale-free range and a cutoff, aL, that marks the length

scale associated with the largest precipitation clus-

ters. The cluster size cutoff aL in our model is not con-

trolled by any single process, but emerges from a set of

constituent, interacting processes. Transferring our re-

sults to real tropical systems implies that the scale of large

tropical systems is an emergent property with multiple

controls—and that these controls can be condensed us-

ing a measure of neighbor interactions like lnn, from

section 8. This implication about the emergent nature of

aL is consistent with studies linking aL to ‘‘convective

sustainability’’: a measure of environmental ability to

support buoyant convective elements (Yuter and Houze

1998; Schumacher and Houze 2006). The nearest neigh-

bor probability lnn subsumes information about convec-

tive sustainability, in addition to the strength of neighbor

interactions. For example, increases in surface evapora-

tion E lead to increased convective sustainability—by

uniformly enhancing the likelihood of precipitation—and

consequently, aL; but so do increases in the efficiency of

lateral mixing (increases inDq). An interesting extension

of our model would be to study the cluster statistics in the

presence of planetary rotation and examine how aL in-

teracts with the Rossby deformation radius.

d. Interactive radiation and self-aggregation

The results from our simple model suggest that radi-

ative effects of the water substance support—but are not

the sole drivers of—convective organization. Our re-

sults also highlight the distinction between the process

of interactive radiation and the phenomenon of self-

aggregation. We find that self-aggregation (in the sense

of radiatively driven separation between moist and dry

regions) is absent in the noise-dominated regime that

supports realistic cluster distributions, and only appears

in a distinct regime dominated by strong radiative

feedbacks. Unlike the observed cluster distributions,

the clusters in the self-aggregated regime show pref-

erence for a horizontal scale—indicated by ‘‘peaks’’ in

the cluster pdf—associated with the strength of the

moisture–radiative feedbacks. This preferred scale in

the cluster pdfs is likely related to the length scale of

self-aggregation in CRMs (Yang 2018; Beucler and

Cronin 2019), but these results must be verified in CRMs.

Overall, we find that stochastic variability—supplied by

the ‘‘multiscale potpourri of atmospheric circulation’’

(Bretherton and Khairoutdinov 2015)—and elementary

moist physics are sufficient to reproduce the gross statis-

tics of precipitation clusters.

e. Implications for climate models

Climate models can reproduce the observed pre-

cipitation cluster size and power distributions, with

reasonable fidelity, though there are quantitative

variations among them (QN17b). The connections with

the branching probability and the efficacy of a measure

like l suggests that convective parameterizations that

are influenced by neighbor communication (e.g., Mapes

and Neale 2011; Bengtsson et al. 2013; Bengtsson and

Körnich 2016) are steps in the right direction toward

producing realistic statistics of convective organization.

The role of temporally autocorrelated noise in our
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model suggests that convective parameterization schemes

with memory (Khouider et al. 2010; Goswami et al.

2017) could also improve the representation of convec-

tive organization. The use of l can aid understanding of

the more basic metrics for the cutoff in cluster area and

power, aL and cL, which can in turn be used to assess

model performance with respect to organized convec-

tion. Parameter perturbation experiments that track

changes to these metrics could potentially be used to

judge the relevance of convective organization to the

mean climate (Bony et al. 2015). There are also large

disagreements among climate models about future

changes to extreme tropical precipitation (O’Gorman

2015), which are associated with mesoscale convection

(Rossow et al. 2013). Parameters aL and cL could poten-

tially help constrain this intermodel spread by acting as

useful climate predictors in emergent constraints studies

(Klein and Hall 2015). When compared to aL, cL is robust

to rain thresholds and parameter perturbations, including

a21—an important parameter in convective parameteri-

zation schemes. This propertymakes cL, the cluster power

cutoff, a more desirable measure of extreme events in

climate models. Therefore, cL serves as a suitable overall

aggregate measure of moist processes involved in neigh-

bor interactions, andmay thus find use in measuring these

interactions within climate model ensembles.

One of the documented consequences of global

warming in climate models is the increase in the

threshold value of moisture that triggers precipitation,

that is, qc (Sahany et al. 2014). In our model, aL and cL
increase dramatically with qc, implying an increase in

the frequency of large, organized precipitating systems

in a warmer world. This result is consistent with re-

ports of increasingly disproportionate contributions

from organized convection (QN17a,b; Tan et al.

2015b; Pendergrass et al. 2016) to future precipitation

increases.
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