
1. Introduction
Modern-day climate models suffer from multiple precipitation-related biases. A variety of phenomena—
particularly in the tropics—are compromised by uncertainties in deep convective schemes. Examples in-
clude the time-mean precipitation structure (Chikira, 2010; Mapes & Neale, 2011; Oueslati & Bellon, 2013), 
the El Niño Southern Oscillation (Neale et al., 2008; Watanabe et al., 2011), the Madden Julian Oscillation 
(Ahn et al., 2017; Zhang & Song, 2009), the diurnal cycle of precipitation (Wang et al., 2007; Xie et al., 2019) 
and precipitation probability distributions (Hirota et al., 2014; Kooperman et al., 2018). Precipitation-relat-
ed biases persist (S. M. Hagos et al., 2021; Tian & Dong, 2020) into the generation of climate models par-
ticipating in phase six of the coupled model inter-comparison project (CMIP6; Eyring et al., 2016). Model 
diagnostics play a key role in the iterated improvement of climate models. In a model development work-
flow, process-oriented diagnostics (PODs; Maloney et al., 2019)—that target a specific physical property of 
the model—are particularly valuable. This is because PODs provide actionable feedback to parameteriza-
tion and model developers, with information about specific parameters or model components requiring 
re-calibration.

Abstract A process-oriented diagnostic (POD) is introduced to measure the thermodynamic 
sensitivity of convection in climate models. The physical basis for this POD is the observed tropical 
precipitation-buoyancy relationship. Fast timescale precipitation and thermodynamic profiles over 
oceans are POD inputs; these are used to evaluate model precipitation sensitivities to lower-tropospheric 
measures of subsaturation (SUBSATL) and undilute conditional instability. The POD is used to diagnose 
24 coupled model inter-comparison project phase six (CMIP6) models. Half the diagnosed models exhibit 
SUBSATL sensitivity close to observed, while six models are excessively sensitive. Parameter perturbation 
experiments with the Community Atmospheric Model (CAM5) support the physical basis for the 
POD. Increasing entrainment increases the CAM5 precipitation SUBSATL sensitivity. Switching off the 
convective scheme or modifying the convective trigger to be oversensitive to moisture reproduces the 
excessive SUBSATL sensitivity seen among CMIP6 models. Models with excessive SUBSATL sensitivities 
have precipitating mean states closer to grid-scale saturation and likely support more grid-scale 
convection.

Plain Language Summary Climate models have difficulties in capturing accurate rainfall 
statistics. A primary reason is that they disagree on how sensitive rainfall ought to be to atmospheric 
moisture, when compared to near-surface warmth. For simplicity, let us call this the moisture-temperature 
sensitivity of rainfall. We know what this looks like from observations. We present a new method to 
compare the moisture-temperature sensitivity in climate models to observations. We apply this method to 
check how well the state-of-the-art climate models perform. We find that in about half the models, rainfall 
has close to the right moisture-temperature sensitivity. This is good news. In earlier generations, climate 
model rainfall has not been sensitive enough to moisture. However, rainfall in some models is over-
sensitive to moisture. We perform experiments with a climate model to examine why. Our experiments 
highlight two possible reasons: (a) the clouds in these models may not act fast enough to remove excess 
moisture from the air or (b) the model may have been tuned to make clouds more sensitive to moisture 
but has overshot the mark. This experiment is presented as a proof of concept for how a model developer 
would use our moisture-temperature sensitivity tool to improve their model.
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An important physical property of atmospheric models is the lower-tropospheric moisture sensitivity of 
convection. This property affects both model mean state and variability. For instance, increased moisture 
sensitivity of convection enhances model intraseasonal variability, but degrades the mean state (Hannah & 
Maloney, 2011, 2014; Kim et al., 2011). Several PODs target model convection's free-tropospheric moisture 
sensitivity (Jiang et al., 2016; Kim et al., 2014; Kuo et al., 2020; S. Hagos et al., 2019; S. M. Hagos et al., 2021; 
Rushley et al., 2018; Wolding et al., 2020). These PODs are motivated by the robust, observed relationship 
between tropical precipitation and column-integrated moisture (Ahmed & Schumacher, 2015; Bretherton 
et al., 2004; Holloway & Neelin, 2009; Peters & Neelin, 2006; Raymond, 2000).

The physical basis for the precipitation-moisture relationship is cloud dilution by dry tropospheric air (Hol-
loway & Neelin, 2009; Schiro et al., 2016). The precipitation-moisture relationship can be recast as a general 
precipitation-buoyancy relationship (Adames et al., 2021; Ahmed & Neelin, 2018; Schiro et al., 2018). The 
buoyancy here is that of a convective updraft entraining environmental air. The entrainment profile is em-
pirically informed and effectively weights lower troposphere vertical levels according to their contributions 
to updraft mass-flux. This buoyancy recasting exercise clarifies that the dilution effects deplete the undilute 
buoyancy (Ahmed & Neelin, 2021) supplied by differences between boundary layer enthalpy and free tropo-
spheric temperature.

In this study, we introduce a POD—based on the observed precipitation-buoyancy relationship—to simul-
taneously assess the dependence of model convection on two effects: (a) an undilute buoyancy measuring 
environmental conditional instability in the absence of lower-tropospheric entrainment, and (b) buoyancy 
dilution by dry, lower free-tropospheric air. A reference baseline for the POD using re-analysis and satellite 
data is established in Section 3. In Section 4, the POD is applied to a set of CMIP6 models. The POD shows 
that several models have lower-tropospheric moisture sensitivity—relative to undilute buoyancy—within 
the baseline uncertainty range. A handful of models are either excessively or inadequately sensitive to low-
er-tropospheric moisture. Parameter perturbation experiments in Section 5 yield prototypes for the range of 
behavior noted among CMIP6 models, and elucidate the physical basis for the POD.

2. The Precipitation-Buoyancy Relationship POD
2.1. Definitions and Data

Following Ahmed et al. (2020) and Adames et al. (2021), a lower-tropospheric averaged buoyancy measure 
BL is defined as:
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In Equation 1, θe is the equivalent potential temperature; θeB is θe averaged over a nominal atmospheric 
boundary layer (ABL). The ABL is taken to be the lowest 100 hPa layer above surface. Terms θeL and  *

eL 
are the θe and saturated θe respectively averaged over the lower-free troposphere (LFT). The LFT is taken 
to be the layer between the top of the ABL and the 500 hPa level. In Equation 1, θe0 is a reference θe value 
(=340 K), L is a constant (=3.0; see Text S1), and g is the acceleration due to gravity (=9.8 ms−2). The term 
CAPEL in Equation 1 is a measure of the undilute plume buoyancy—akin to convective available potential 
energy (CAPE) computed using grid-scale thermodynamic profiles from the lower troposphere. The term 
SUBSATL measures the degree of subsaturation in the LFT. Weights wB and wL depend on the ratio of the 
ABL and LFT thicknesses (Text S1) and represent the typical fraction of air entrained into a convecting 
plume from each layer. While BL has units of ms−2, the scaling factor θe0 is used to present CAPEL and SUB-
SATL in units of K.

The POD observational baseline is constructed using 3-hourly ERA5 (Hersbach et al., 2020) temperature 
and specific humidity profiles. The BL values computed using Equation 1 are spatio-temporally matched 
to 3-hourly precipitation values from the Tropical Rainfall Measuring Mission (TRMM 3B42; Huffman 
et al., 2007). Both ERA5 and TRMM output from years 2002–2014 are used only over tropical ocean points 
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from 20°N–20°S. High (0.25° × 0.25°) and low (2.0° × 2.0°) horizontal resolution versions of the ERA5/
TRMM 3B42 datasets are used to quantify sensitivities to resolution and to establish the baseline uncertain-
ty range.

2.2. Observational Baseline

Figure  1 sets the observational baseline for the precipitation-BL relationship using the high-resolution 
ERA5/TRMM 3B42 data. The precipitation conditionally averaged by BL is shown in Figure 1a. There exists 
little-to-no conditional-mean precipitation below a threshold BL value, but strong precipitation above it. The 
precipitating probability density function (pdf) of BL—for points precipitating above 0.25 mm/hr—peaks 
just below the threshold BL value for strong precipitation. This indicates a balance between the slow times-
cale generation of BL and its fast timescale consumption by convection and associated precipitation. The 
upper x-axis in Figure 1a shows BL scaled by   0( )/L e g to have the same units (K) as CAPEL and SUBSATL. 
Figure  1b shows a two-dimensional (2D) ‘precipitation surface’, which is the TRMM 3B42 precipitation 
conditionally averaged by CAPEL and SUBSATL. As seen from Equation 1, a scaled and weighted difference 
between CAPEL and SUBSATL yields BL. Increments in CAPEL (more undilute buoyancy) and decrements 
in SUBSATL (closer to LFT saturation) both produce strong precipitation increases. A 2D precipitation on-
set occurs for transitions between low CAPEL/high SUBSATL (stable/dry) and high CAPEL/low SUBSATL 
(unstable/moist) environments. Although the information in Figure 1b can be presented with a 2D contour 
plot (Figure S1), the three-dimensional perspective provides additional visual emphasis on the precipitation 
pickup.

The joint precipitating pdf (>0.25 mm/hr) of CAPEL and SUBSATL is also shown in Figure 1b. Note that 
results here are insensitive to the actual value of the precipitating threshold. As for the marginal precipitat-
ing BL pdf in Figure 1a, the mode of this joint pdf is situated on the edge of the 2D precipitation onset. This 
property allows the construction of a metric γCS to assess the relative sensitivity of TRMM 3B42 precipita-
tion to variations in CAPEL versus SUBSATL. The construction of this metric is elaborated in Figure 1c. The 
location of the precipitating pdf mode is used to divide the precipitation surface into three nonoverlapping 
regions: A, B and C. Precipitation increases for transitions from regions B to A—with a nearly invariant 
SUBSATL—provide a measure of the CAPEL sensitivity of precipitation. A similar precipitation increase 
between regions C and A provides a measure of the SUBSATL sensitivity. A vector is now defined as a fi-
nite-difference gradient of precipitation in the CAPEL-SUBSATL plane with magnitude:


   

          

22
A B A C

CS
LA LB LA LC

P P P P ,
CAPE CAPE SUBSAT SUBSAT

 (2)

AHMED AND NEELIN

10.1029/2021GL094108

3 of 10

Figure 1. (a) The ERA5/TRMM 3B42 precipitation-BL relationship (left axis) and the BL pdf for precipitating points (right axis). The top axis shows BL in 
units of K. (b) The 2D TRMM 3B42 precipitation conditionally averaged by CAPEL and SUBSATL (colored 2D contours). The sharp increase in conditional-
mean precipitation is reproduced as a 2D surface and is shifted along the z-axis for clarity. The maroon contours represent the 2D precipitating pdf; the 
mode of this pdf is indicated by the magenta star marker. The orange arrow is the γCS vector summarizing the precipitation gradient (see text; a magnitude of 
0.25 mm hr−1 K−1 is displayed as a length of 10 K in the CAPEL-SUBSATL plane). The z-axis has units of mm/hr; the colors in the precipitation surface have the 
same units with values shown in the colorbar. (c) Steps involved in γCS computation. Note differences in x- and y-axis ranges between (b and c).
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where PA, CAPELA and SUBSATLA are the precipitation, CAPEL and SUBSATL respectively averaged over 
region A in Figure 1c. A similar notation holds for quantities with subscripts B and C in Equation 2. The 
magnitude of γCS in Equation 2 measures the strength of the precipitation onset or the ‘pickup’. The angle 
between γCS and the SUBSATL axis in Figure 1b is termed θCS and defined:

  
 

 
A B LA LC

CS
LA LB A C

P P SUBSAT SUBSATtan .
CAPE CAPE P P (3)

The angle θCS gives the direction of the gradient of the precipitation surface. The ratio   tan θCS is between 
partial derivatives estimated from point A along the CAPEL and SUBSATL directions. It thus summarizes 
the relative precipitation sensitivities to CAPEL and SUBSATL. In Figure 1 and in subsequent similar figures, 
the head of the vector γCS is positioned on a point in the CAPEL-SUBSATL plane with co-ordinates: (CAPELA, 
SUBSATLA).

If θCS = 90°, γCS is parallel to the CAPEL axis, and the precipitation is solely sensitive to CAPEL pertur-
bations. This represents a case with negligible entrainment in the LFT in which the undilute BL entire-
ly governs precipitation. If precipitation is equally sensitive to CAPEL and SUBSATL perturbations, then 
θCS = 45°. When θCS = 0°, precipitation is only sensitive to SUBSATL perturbations, without influence from 
undilute buoyancy. The ERA5/TRMM 3B42 precipitation surface has θCS ∼ 34.7°, suggesting greater relative 
SUBSATL sensitivity, likely due to the ledge-like region B in Figure 1b. Within this region, the condition-
al-mean precipitation is nearly invariant over a large range of CAPEL values (∼−20–0 K).

Similar statistics as in Figure 1 are also noted for the low-resolution observational baseline (Text S3 and 
Figure S2). The measures |γCS| and θCS condense information about the thermodynamic sensitivity of trop-
ical convection into a form that allows estimation and comparison across datasets, and has a simple visual 
representation. This property forms the basis for the precipitation-buoyancy relationship POD, which is 
applied to a set of CMIP6 models in the following section.

3. Application to CMIP6 Models
Twenty-four models from the CMIP6 archive were analyzed. The POD targets fast timescale processes, so 
sub-daily samples over a two-year time period are sufficient to construct the precipitation-buoyancy statis-
tics. For most models, 3-hourly averaged precipitation, and 6-hourly instantaneous temperature and specif-
ic humidity fields from the historical runs are used. Outliers from this general case, along with details about 
model horizontal resolutions and time periods analyzed are in Text S4 and Table S1. As for the observational 
baseline, only tropical ocean points between 20°N–20°S are used. Figure 2a presents precipitation condi-
tionally averaged by BL for the CMIP6 models. Figure 2b presents the parameters of the γCS vector—|γCS| and 
θCS—on a polar plot. A bootstrapping procedure is used to generate an uncertainty measure for the obser-
vational baseline; this accounts for differences in the analysis periods between observations (13 years) and 
models (2 years). More information on the bootstrapping procedure is given in Text S2. Both the high- and 
low-resolution versions of the observational baseline—which bracket the different CMIP6 model resolu-
tions—are shown in Figure 2.

Several CMIP6 models capture the sharp precipitation-BL relationship (Figure 2a). A few model pre-
cipitation fields (CNRM-CM6-1-HR, MRI-ESM2-0, FGOALS-g3, MIROC6) show high sensitivity to 
BL—as measured by conditional-mean precipitation larger than 6  mm/hr. A few models have weak 
precipitation-BL relationships with conditional-mean precipitation <2 mm/hr; these include the IPSL 
models, the MPI models, AWI-ESM1 and MIROC-ES2L. Model horizontal resolution is not a universal 
indicator of the precipitation-BL relationship strength. This is consistent with the fact that the low-res-
olution ERA5/TRMM 3B42 data set has |γCS| and θCS values comparable to the high-resolution version 
(Figure 2b). However, for the same model, the high-resolution version shows greater pickup strength 
than the low-resolution version; this is best exemplified by comparing CNRM-CM6-1 with CNRM-CM6-
1-HR. Each model precipitation field responds to an internal buoyancy measure that varies between 
convective schemes and does not necessarily correspond to BL. Despite this, most model precipitation 
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fields exhibit sensitivity to BL. This is presumably due to qualitatively similar underlying physics in pa-
rameterization assumptions.

Figure 2b displays the model precipitation CAPEL-SUBSATL sensitivity on a polar plot. The location of each 
model on this plot has co-ordinates (|γCS|, θCS). Half the analyzed models (12 out of 24) have CAPEL-SUB-
SATL sensitivities bound by uncertainties in the observational baseline (33° ≲ θCS ≲ 42°). Examples include 
the CNRM-CM6 models, MIROC6, SAM0-UNICON, CESM2, MRI-ESM2-0 and GISS-E2-1-G. Four mod-
els (AWI-ESM-1-1-LR, MIROC-ES2L, and the two MPI models) have precipitation inadequately sensitive 
to SUBSATL variations (θCS > 45°). These models also exhibit weaker precipitation-BL relationships (Fig-
ure 2a) and have smaller pickup strengths (|γCS| ∼ 0.1 mm/hr K−1 in Figure 2b). Six models have θCS < 15°: 
FGOALS-g3, BCC-CSM2-MR, GFDL-CM4, CanESM5 and the two IPSL models. These models are classified 
as being excessively sensitive to SUBSATL variations. Possible reasons for this behavior are explored in the 
next section. In all but one pair of models (MIROC6 and MIROC-ES2L), resolution changes do not greatly 
impact the CAPEL-SUBSATL sensitivity.

Figure 3 shows 2D precipitation surfaces for a few select models (see Figure S3 for contour plot versions). 
The models (top row in Figure 3) with reasonable CAPEL-SUBSATL sensitivity and a strong precipitation 
pickup (CNRM-CM6-1-HR, MIROC6 and SAM0-UNICON) compare favorably with the ERA5/TRMM 3B42 
precipitation surface. The strong pickup in these models is visible from the sharp increase in the precipita-
tion surface along the z-axis. The correspondence to the observed CAPEL-SUBSATL sensitivity can also be 
seen by comparing their γCS vectors in Figure 3 to that of the observational baseline. Models CESM2 and 
NorESM2-MM have smaller |γCS| values, but similar θCS values to observed. As in Figure 1b, the mode of the 
precipitating pdfs in these models is close to the precipitation onset.

The bottom row in Figure 3 shows precipitation surfaces for models with over-sensitivity to SUBSATL. 
These models have small θCS values—also seen in the differences between their γCS vectors and that of 
ERA5/TRMM 3B42. Among these models, FGOALS-g3, BCC-CSM2-MR and CanESM5 have relatively 
strong pickups (also inferred from their |γCS| values in Figure  2b). Both GFDL-CM4 and IPSL-CM6A-
LR have weak precipitation pickup strengths, but their strong SUBSATL sensitivity can be deduced by 
following the precipitation contours on the CAPEL-SUBSATL plane in Figure  3. The precipitating pdfs 
for FGOALS-g3, BCC-CSM2-MR, CanESM5 and IPSL-CM6A-LR illustrate a consequence of excessive 
SUBSATL sensitivity for model mean states. When compared with the observational baseline, these four  
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Figure 2. (a) The precipitation-BL relationship for 24 analyzed CMIP6 models. The ERA5/TRMM 3B42 curves (0.25° 
version in black stars; 2.0° version in gray circles) form the observational baseline. (b) Parameters of the γCS vector 
for each model represented in a polar plot. The ERA5/TRMM 3B42 γCS values are represented by the black star (0.25° 
version) and black circle (2.0° version) markers. A bootstrapping procedure is used to estimate the observational 
uncertainty (Text S2). The error bars around the black star and gray solid markers in (a) denote the 5th–95th percentile 
in conditional-mean precipitation. The shaded regions around the observational baseline markers in (b) bound the 
5th–95th percentile of |γCS| and θCS values. The dashed gray lines in (b) bound θCS values in the observational baseline 
between the 5th percentile of the 0.25° version and the 95th percentile of 2.0° version.
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models have their precipitating pdf modes closer to LFT saturation (SUBSATL ∼ 0). These models there-
fore saturate their lower troposphere to generate sizeable precipitation—an indicator of “gridpoint” storms 
(I. M. Held et al., 2007).

4. Parameter Perturbation Experiments With CAM5
We now turn to parameter perturbation experiments with version 5 of the Community Atmospheric Model 
(CAM5; Neale et al., 2012). These experiments serve two purposes: (a) they verify that the γCS metric indeed 
captures the CAPEL-SUBSATL sensitivity of model convection and (b) they generate prototypes for the ob-
served diversity among CMIP6 models. The CAM5 model was run at a 0.9° × 1.25° horizontal resolution 
with fixed sea surface temperatures. The CAM5 convective parameterization is the Zhang-McFarlane (ZM) 
scheme (Zhang & McFarlane,  1995). The entrainment parameter within the ZM scheme closure (Neale 
et al., 2008) is perturbed with a series of multipliers ranging from 0.125 to 1.25 times the control value. To 
demonstrate the impact of other parametric changes, two additional experiments are carried out: RHTRIG 
and ZMOFF. In RHTRIG, the trigger function in the ZM scheme is modified; deep convection only occurs 
when the column relative humidity (CRH) exceeds 0.95 and when the entraining CAPE exceeds 100 J/kg. 
In ZMOFF, the convective scheme is turned off, so any convective motion must occur within the resolved 
physics. An initial 1-year spin-up run is used to branch off the various perturbation runs. Each perturbation 
run extends to a 2-year time period. Precipitation, and vertical profiles of temperature and specific humidity 
were output every 3 h.

Figure  4a–4g illustrate the changes to the CAM5 precipitation surface in response to parameter pertur-
bations in the ZM scheme. For small entrainment (Figure 4a), the precipitation surface is oriented more 
toward the CAPEL direction, as also inferred from the large θCS value. The precipitating pdf is situated on 
the edge of the precipitation onset as expected, but the mode of the precipitating pdf occurs in a drier state 
when compared to ERA5/TRMM 3B42; the pickup also begins at lower values of CAPEL. As the entrain-
ment increases toward the control value (Figure 4b–4e), the θCS value decreases to become nearly parallel 
with the observational baseline γCS vector (Figure 4d). This change is consistent with the expectation that 
increased entrainment generates a stronger precipitation-moisture relationship (Kuo et al., 2017; Sahany 
et al., 2012). The precipitating pdf mode also shifts closer to the ERA5/TRMM 3B42 value with increasing 
entrainment. When the trigger function in the ZM scheme is modified to be explicitly sensitive to CRH, the 
precipitation is much more sensitive to SUBSATL (θCS = 16.1° in Figure 4f). When the convective scheme 
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Figure 3. As in Figure 2b but for select phase six of the CMIP6 models. Note the one difference from Figure 2b: the magenta star in each panel denotes the 
mode of the 0.25° ERA5/TRMM 3B42 precipitating pdf. The model precipitating pdfs are denoted by maroon contours. The top row depicts models with θCS 
values close to observed. The bottom row depicts models with excessive SUBSATL sensitivity (θCS ≲ 15°). Also note the varying z-axis range between each panel.
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is turned off, the CAM5 precipitation surface is almost solely sensitive to SUBSATL (θCS  =  9.6° in Fig-
ure 4g). The precipitating pdfs suggest that for the large entrainment (≥0.75x) runs, and for the RHTRIG 
and ZMOFF experiments (Figure 4d–4g), there is an increasing tendency for CAM5 to saturate the LFT in 
order to generate strong precipitation.

As entrainment increases, the model transitions from exhibiting a weak pickup, small SUBSATL sensitivity 
to strong pickup and increased SUBSATL sensitivity. As inferred from the 2D precipitation surface plots, the 
ZMOFF case has the greatest SUBSATL sensitivity, while RHTRIG has large SUBSATL sensitivity and the 
greatest pickup strength. Figure 4h condenses this information from Figure 4a–4g in a polar plot, similar 
to Figure 2b. This figure shows that (a) the γCS metric captures information about model precipitation ther-
modynamic sensitivity, and (b) the polar representation of this metric offers a succinct comparison across 
different model runs. The set of CAM5 experiments shown in Figure 4 also demonstrate a use case for 
the precipitation-buoyancy POD deployed during a model development/parameter tuning cycle (Hourdin 
et al., 2017; Mauritsen et al., 2012).

The perturbation runs from Figure 4 are also archetypes for the range of behavior noted in the CMIP6 en-
semble. The low-entraining case (0.125x) with a weak pickup and small SUBSATL sensitivity has γCS values 
closer to that seen for AWI-ESM-1, MIROC-ES2L and the MPI models. The adequate entrainment cases 
(0.75x–1x) have θCS values closer to the cluster of models with reasonable CAPEL-SUBSATL sensitivities (for 
example, MIROC6, SAM0-UNICON, CESM2 and the CNRM-CM6 models.). Both RHTRIG and ZMOFF 
experiments mimic the excessive CAPEL-SUBSATL sensitivity seen for six models in Figure 2b. An impor-
tant difference, however, separates the RHTRIG and ZMOFF cases. In ZMOFF, the excessive SUBSATL 
sensitivity is due to grid-scale saturation inducing large-scale rain. Whereas in RHTRIG, the parameterized 
convection has high sensitivity to SUBSATL built in as a tuning assumption (Figure S5). Further analysis 
involving the convective rain component (Figure S4 and Text S5) suggests that RHTRIG is a prototype for 
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Figure 4. Panels (a–g) are the same as in Figure 1b but for Community Atmospheric Model (CAM5) parameter perturbation experiments: (a–e) are 
entrainment perturbations relative to control in (d); (f) perturbed trigger function and (g) ZM convective scheme off. The magenta star denotes the mode of the 
0.25° ERA5/TRMM 3B24 precipitating pdf. The CAM5 precipitating pdf is denoted by maroon contours. The dashed black arrow in these panels is the ERA5/
TRMM 3B42 γCS vector. Panel (h) is as in Figure 2b but for CAM5 parameter perturbation experiments (note different radial axis range). The dashed gray lines 
in (h) give the observed θCS range from Figure 2b.
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the behavior of BCC-CSM2-MR, FGOALS-g3 and the IPSL models, and ZMOFF is a prototype for the GF-
DL-CM4 and CanESM5 models.

5. Conclusions
The POD introduced in this study permits quantitative assessment of the thermodynamic sensitivities of 
convection among CMIP6 models. Half the analyzed models have precipitation sensitivity to measures of 
undilute buoyancy (CAPEL) and lower free tropospheric subsaturation (SUBSATL) reasonably close to ob-
served. A handful of models have excessive precipitation sensitivity to SUBSATL. These models also have 
precipitating states typically closer to grid-scale saturation, pointing to the presence of frequent convection 
at the grid scale. Frequent grid-scale saturation can impact global radiative budgets (I. M. Held et al., 2007) 
and skew model precipitation probability distributions toward stronger extremes (Chan et al., 2014; Norris 
et al., 2021; Pendergrass & Hartmann, 2014). On the other hand, models with inadequate SUBSATL sensitiv-
ity have weaker precipitation extremes (not shown). The POD thus offers insights into climate-system pro-
cesses when the models are viewed as alternate realizations of convective physics. In CAM5, over-sensitivity 
to SUBSATL is seen when the convective scheme is either switched off or when the convective trigger is 
made sensitive to column relative humidity. Inadequate SUBSATL sensitivity emerges from weaker entrain-
ment in the CAM5 convective scheme. The CAM5 parameter perturbation experiments highlight plausible 
parameteric choices and process-level reasons for why CAPEL-SUBSATL sensitivities among CMIP6 models 
depart from the observational baseline. The perturbation experiments also demonstrate a use case for how 
the POD would be deployed in a model development/tuning workflow.

Data Availability Statement
The ERA5 data is available at https://doi.org/10.24381/cds.bd0915c6. The TRMM 3B42 data is available from 
https://doi.org/10.5067/TRMM/TMPA/3H/7. The CMIP6 model data was obtained from https://esgf-node.
llnl.gov/projects/esgf-llnl/. The scripts used to generate the POD metrics and plots are available at https://
doi.org/10.5281/zenodo.4969120 as a part of NOAA Model Diagnostics Framework effort (https://www.
gfdl.noaa.gov/mdtf-diagnostics/). Information on the various CMIP6 models can be found in the following 
references (see Table S1 and S2 for the corresponding models): Boucher et al. (2020); Cao et al. (2021); Cher-
chi et al. (2019); Danabasoglu et al. (2020); Dufresne et al. (2013); Hajima et al. (2020); I. Held et al. (2019); 
Kelley et al.  (2020); Lee et al.  (2020); Li et al.  (2020); Mauritsen et al.  (2019); Müller et al.  (2018); Park 
et al. (2019); Seland et al. (2020); Semmler et al. (2020); Swart et al. (2019); Tatebe et al. (2019); Voldoire 
et al. (2019); Wu et al. (2019); Yukimoto et al. (2019); Ziehn et al. (2020).
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