
1.  Introduction
Tropical precipitation extremes are poised to intensify under global warming (O’Gorman, 2012; O’Gorman & 
Schneider, 2009; Romps, 2011). Pointwise precipitation statistics have been extensively examined (see reviews in 
Muller & Takayabu, 2020; O’Gorman, 2015). However, similar examinations of spatially contiguous precipitat-
ing points are less common. Observation-based studies (Hamada & Takayabu, 2018; Roca & Fiolleau, 2020; Tan 
et al., 2015) suggest that extreme tropical rainfall intensification is partly driven by increases in the frequency of 
spatially-extensive precipitating systems. It is imperative to quantify changes to these systems, given their signif-
icant socioeconomic risk (Doswell III et al., 1996; Peduzzi et al., 2012).

Precipitation clusters, defined as spatially contiguous precipitating regions, are useful entities when character-
izing spatially-extensive precipitating systems. Two leading properties are naturally ascribed to precipitation 
clusters: (1) the cluster size (measured by cluster area a) and (2) cluster-integrated precipitation, which can 
be expressed as latent heat release with units of power and is therefore termed cluster power, c. The observed 
probability density functions (pdfs) of cluster size and power display long power law ranges followed by a large-
event cutoff (Peters et  al.,  2012; Quinn & Neelin, 2017a; Teo et  al.,  2017). The large-event cutoff values aL 
and cL respectively denote scales for cluster size and power that characterize the rapid probability drop in the 
medium-to-large events range of the pdfs. The cutoffs therefore act as measures of extreme events in terms of 
both size and rain amount. Events near and beyond the cutoffs are spatially-extensive precipitating systems that 
include large mesoscale convective systems and tropical cyclones (Peters et al., 2012; Quinn & Neelin, 2017a). A 
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Plain Language Summary  Spatially continuous precipitating points are called precipitation 
clusters. In the tropics, the largest of these clusters represent systems like hurricanes or groups of 
thunderstorms. Large clusters also release greater rainfall and therefore hold more potential for destruction. In 
this study, we use state of the art climate models to examine how precipitation clusters with very large size and 
rain amounts will change under global warming. All the models we analyzed agree that there will be significant 
increases in the frequency of large and heavily precipitating clusters. The models project between a 4 and 15 
times increase in the frequency of clusters bearing the largest rain amounts. These increases are projected to 
happen predominantly over tropical regions with warm surface waters. We also found a simple hypothesis that 
explains these changes. This hypothesis is based on the fact that warmer air can hold more moisture. Increases 
in the frequency of precipitation clusters with large rain amounts could be particularly devastating for the 
islands of the western Pacific and heavily populated coastal regions of the Indian subcontinent.
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stochastic prototype suggests that aL and cL are governed by moisture-convective feedbacks and nearest neighbor 
interactions (Ahmed & Neelin, 2019). Similar large-event cutoffs are also noted in pointwise precipitation statis-
tics, including for rainfall accumulations (Martinez-Villalobos & Neelin, 2018; Neelin et al., 2017; Stechmann & 
Neelin, 2014) and daily-averaged rainfall (Martinez-Villalobos & Neelin, 2019).

Global climate models reasonably reproduce the cluster pdf shapes, and also indicate that the cluster power 
cutoff increases under global warming (Quinn & Neelin, 2017a, 2017b). However, many quantitative details of 
this increase are unknown; for instance: (a) how do the cluster power increases compare to Clausius-Clapeyron 
(CC) implied changes (Allen & Ingram, 2002; Kharin et al., 2013)?, (b) what is the spatial distribution of these 
increases?, and (c) how does aL vary with warming, given the absence of a simple hypothesis for how precipita-
tion cluster sizes should change. In this study we use models participating in Phase 6 of the coupled model inter-
comparison project (CMIP6; Eyring et al., 2016) to probe the quantitative and spatial details of aL and cL changes 
under global warming. The cluster pdfs from CMIP6 models—in both current and future climates—alongside 
the observational baseline are discussed in Section 2. All models show aL and cL increases under global warming. 
These increases are quantified using risk ratios in Section 3. In Section 4, the spatial distribution of clusters with 
large power values is examined. Regions that would likely see the largest increases in the strength and frequency 
of the most heavily precipitating systems are highlighted.

2.  Precipitation Cluster Probability Distributions
The observational baseline for the cluster statistics is established using TRMM 3B42 precipitation data (Huff-
man et al., 2007) on a 0.25° × 0.25° spatial grid with 3-hourly temporal frequency. The analysis domain cov-
ers the tropical region (30°N–30°S) for a 10-year time period (2005–2014). 10 CMIP6 models are analyzed. 
Three-hourly model precipitation fields from both historical and end-of-century shared socioeconomic pathway 
5–8.5 (SSP5-8.5; O’Neill et al., 2016) runs are used. Ten-year time periods from both historical (2005–2014) 
and SSP5-8.5 runs (2091–2100) are used for all but one model (due to data availability; see Table S1 in Sup-
porting Information S1). Spatially contiguous grid-points precipitating above 1 mm/hr are grouped to form pre-
cipitation clusters, using both observed and model precipitation fields. Sensitivity to the threshold precipitation 
used to create the clusters is tested (Texts S3 and S4). Models exhibit greater sensitivity than observations at low 
thresholds, but the primary results are unaffected for precipitation thresholds exceeding 0.75 mm/hr (Text S4 in 
Supporting Information S1). Using a precipitation threshold also eliminates spurious effects of the drizzle prob-
lem on the model cluster pdfs (Texts S2 and S3 in Supporting Information S1).

The cluster size and power pdfs for TRMM 3B42 and CMIP6 models are shown in Figure 1. As documented previ-
ously (Quinn & Neelin, 2017a; Teo et al., 2017), the TRMM precipitation cluster distributions display a long power 
range (over nearly 4 decades), followed by a large-event cutoff. The cluster size is expressed in units of km2. Clus-
ter power is expressed in units of GigaWatts (GW). The pdf of cluster power, 𝐴𝐴 𝐴𝐴(𝑐𝑐) is approximately described by:

�(�) ∼ �−�exp
(

− �
�L

)

� (1)

with a similar expression for cluster area. In Equation 1, τ is the slope of the power-law range. From Equation 1, 
it is seen that the power law describes the distribution for small- and medium-sized events (c 𝐴𝐴 𝐴 cL), while the ex-
ponential describes the distribution for large events (c 𝐴𝐴 ∼ cL). Figure 1 shows that the CMIP6 models qualitatively 
reproduce the shape of the observed cluster pdfs, including the power law range and a large-event cutoff (except 
for BCC-CSM2-MR; see Text S1). Most models have τ values close to the observational baseline, although a few 
models exhibit larger departures (Text S1 in Supporting Information S1). Inter-model differences in the length of 
the power law range are also noted in Figure 1. These arise from horizontal resolution differences among models 
(Table S1 in Supporting Information S1), which limit the smallest sampled cluster size and power values.

The log-log plots (Figures 1a and 1b) show that for a given model, the power law range for the SSP5-8.5 clusters 
extends out to slightly larger values than for the historical clusters. This implies changes in aL and cL values under 
global warming. To more closely examine these changes, the cluster pdfs are presented on a log-linear plot in 
Figures 1c and 1d, which enlarges the pdf tails. A linear regression over the pdf tails yields the straight line fits in 
Figures 1c and 1d. The range for the linear fit begins at 106 km2 for aL estimation, and at 1.5 𝐴𝐴 ×  106 GW for cL esti-
mation. These values are chosen to ensure that the cutoff estimators are unaffected by the power law range; small 
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changes to these values do not qualitatively impact the results (Text S5 in Supporting Information S1). The good-
ness-of-fit for the straight lines in Figures 1c and 1d validates the use of the exponential in Equation 1 to capture 
the pdf tails—since exponentials appear as straight lines on log-linear axes. The slopes of the straight line fit (𝐴𝐴 ≈ −1/
aL in Figure 1c and 𝐴𝐴 ≈ −1/cL in Figure 1d) yield estimates for aL and cL. When estimated this way, considerable in-
ter-model spread exists in the aL and cL values from CMIP6 models. Only a handful of model historical simulations 
quantitatively approach the observed aL and cL values (see Text S2). This is also inferred from Figures 1c and 1d 
by noting differences in the slopes of the log-linear fit between the observations (black) and the different historical 
runs (blue). These differences in cutoffs could arise from model differences in the details of moist physics (e.g., 
in the convective schemes), since the large-event cutoff is sensitive to the strength of moist-convective feedbacks 
(Ahmed & Neelin, 2019). Despite the spread in aL and cL values, the straight line slopes in Figures 1c and 1d are 
consistently shallower for the SSP5-8.5 runs than for the corresponding historical runs. This suggests that for every 
model examined, both the cluster size and power cutoffs are larger in the SSP5-8.5 run.

In addition to straight line fits in log-linear plots, the large-event cutoffs can also be estimated using the moment 
ratio. The cluster power moment ratio, cM is given by:

𝑐𝑐M =
⟨𝑐𝑐2⟩

⟨𝑐𝑐⟩
.� (2)

Figure 1.  Precipitation cluster size and power pdfs from TRMM 3B42 (black) and CMIP6 models (historical in blue and 
SSP5-8.5 in red). The pdfs are spaced 2 decades apart on the log-y axis for clarity and are displayed using logarithmic (top 
row) and linear x-axes (bottom row). Reference power law slopes with values −1.6 (panel a) and −1.5 (panel b) are denoted 
by black dashed lines. The blue and red dashed lines in (c) and (d) denote linear fits used to estimate aL and cL (see text; 
Section 2); the linear fit range begins at values denoted by the dashed vertical lines in (c) and (d). The integers in each panel 
denote different CMIP6 models: 1-ACCESS-CM2; 2-CNRM-CM6-1; 3-CNRM-CM6-1-HR; 4-HadGEM3-GC31-MM; 
5-IPSL-CM6A-LR; 6-KACE-1-0-G; 7-MIROC6; 8-MRI-ESM2-0; 9-NESM3; 10-BCC-CSM2-MR.
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Here 𝐴𝐴 ⟨𝑐𝑐⟩ and 𝐴𝐴 ⟨𝑐𝑐2⟩ are the first and second moments of cluster power respectively. The estimator in Equation 2 
is proportional—but not equal—to cL (Peters et al., 2010). Unlike cL, which is estimated from the pdf tail, cM 
depends on the full pdf range. Departures in the pdf shape away from Equation 1 can thus introduce additional 
sensitivities in the cM computation. Nevertheless, cM proves a useful second estimator for the large-event cluster 
power cutoff, and supplements the insights derived using cL alone. A similar expression as in Equation 2 follows 
for the cluster size moment ratio aM.

The quantitative details of how the large-event cutoff changes under warming are displayed in Figure 2. In this 
figure, aL and cL are the large-event cluster size and power cutoffs respectively estimated using straight line fits 
to the pdf tails (as discussed for Figures 1c and 1d). The aM and cM values are computed using the moment ratio 
estimator in Equation 2 for cluster size and power respectively. The differences in cutoffs between SSP5-8.5 and 
historical runs are normalized by the tropics-mean (30°N–30°S) surface temperature change for each model. This 
allows expression in units of %/K. Figures 2a and 2b show that for all models, both the large area (aM and aL) and 
power (cM and cL) cutoffs increase. This suggests that under global warming, spatially-extensive precipitating 
systems are projected to increase under measures of both size and cumulative precipitation.

Physical interpretations are now offered to interpret the details of aL and cL increases in Figure 2. Two limiting 
cases based on the CC-scaling are proposed: CC-Case 1 and CC-Case 2. In CC-Case 1 the cluster-enclosed 
precipitation in the historical run is assumed to scale with water vapor at the CC-implied rate, with cluster sizes 
staying fixed. This predicts a CC-scaling of cL under global warming and no change in aL. From Figure 2b, the 
CC-Case 1 scaling (dashed line) reasonably estimates cL changes in five models: CNRM-CM6-1, CNRM-CM6-
1-HR, HadGEM3-GC31-MM, MIROC6, and NESM3 all show close-to-CC increases (7 𝐴𝐴 ± 1%/K).

In CC-Case 2, the intensity of all precipitating points from the historical run is assumed to increase at 7%/K. This 
increases the cluster area because more points now cross the 1 mm/hr threshold. The combination of larger cluster 
areas and CC-scaled precipitation rates generates cluster power increases exceeding 7%/K (super-CC scaling). 
The area and power cutoff changes implied by CC-Case 2 are denoted by aL2 and cL2. From Figure 2b, cL2 is an ac-
curate estimator for at least three models exhibiting super-CC changes: BCC-CSM2-MR, KACE-1-0-G and MRI-
ESM2-0. For two models, CNRM-CM6-1 and IPSL-CM6A-LR, CC-Case 2 noticeably overestimates cL; for the 
other five models it moderately overestimates. The aL changes in Figure 2b are also reasonably well-explained by 
CC-Case 2 for five models: BCC-CSM2-MR, CNRM-CM6-1-HR, KACE-1-0-G, MRI-ESM2-0, and NESM3. 
For other models, CC-Case 2 over-predicts the area cutoff changes. The CC-scaling of precipitation thus qual-
itatively explains why cluster size cutoffs increase under warming. The quantitative changes are overestimated 

Figure 2.  Differences in large-event cutoffs between historical and SSP5-8.5 model runs for (a) cluster area and (b) cluster 
power. The differences are expressed in units of percent change per K. The dashed black line in (b) marks the Clausius-
Clapeyron implied change of 7%/K under CC-Case 1. Here, aL2 and cL2 denote changes predicted under CC-Case 2 (see text; 
Section 2).
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in half the models, plausibly because smaller rain rates near the cluster boundary scale slower than CC. The 
cluster size cutoff increases also impact the cluster power cutoff changes. Comparing Figures 2a and 2b, it is seen 
that modest aL increments are associated with near-CC cL increases, and large aL increments with super-CC cL 
increases.

3.  Risk Ratios and Changes in the Large-Event Range
Risk ratios (RRs; Fischer & Knutti, 2015; Stott et al., 2004) are useful when summarizing the increased likelihood 
of events under different warming scenarios. Conditional RRs (Neelin et al., 2017; Quinn & Neelin, 2017a) fur-
ther assess the increased likelihood for a given cluster size or power. These are computed as the ratio of the cluster 
pdf (size and power) in the SSP5-8.5 run to that in the historical run. Figure 3 shows the conditional RRs from 
each CMIP6 model, where the RR is conditioned on the value of cluster size (Figures 3a and 3c) and power (Fig-
ures 3b and 3d). For each model, an uncertainty measure for the conditional RR is generated from a bootstrapping 
procedure. The cluster pdfs for the historical and SSP5-8.5 scenarios are first reproduced 1,000 times by sampling 
the original distribution with replacement. The conditional RRs are then computed for each ensemble member. 
The 5th and 95th percentiles of this 1,000-member ensemble bound the error bars in Figure 3.

Figures 3a and 3b show that under global warming, the probability of encountering small-to-medium clusters (in 
terms of either size or power) is not greatly increased, since the conditional RR is ∼1. However, the likelihood 

Figure 3.  Cluster size (panels a and c) and power (panels b and d) risk ratios for different models. The risk ratios are 
displayed with linear (top row) and semi-log (bottom row) axes. The dashed lines in panels (c) and (d) are risk ratios 
estimated using aL and cL differences (see text; Section 3). The risk ratios in the bottom row are vertically spaced for clarity.
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of encountering very large events increases rapidly; the conditional RRs for cluster size and power appear to 
increase exponentially. Most models project at least a doubling in probability for the very largest cluster size that 
occurs with sufficient frequency to be captured in the historical sample (ranging between ∼2 and 6 𝐴𝐴 × 106 km2 
among models). The chance of encountering the most heavily raining clusters jumps by at least 4 times. Half the 
models (ACCESS-CM2, HadGEM3-GC31-MM, IPSL-CM6A-LR, KACE-1-0-G and MRI-ESM2-0) project a 
greater than 10 times increase in probability for the very largest values of cluster power (which varies between 

𝐴𝐴 ∼ 3 and 6 𝐴𝐴 × 106 GW among these models). The uncertainty measure from the bootstrapping also increases with 
cluster size and power as a consequence of the increased rarity of events beyond the large-event cutoff.

The near-exponential increase in RR inferred from Figures 3a and 3b is a property of the cluster pdf shape from 
Equation 1. The form in Equation 1 suggests that the conditional RR for cluster power can be estimated by:

conditional RR(�) = exp
(

�
[

�L-SSP − �L-HIST

�L-SSP × �L-HIST

])

,� (3)

where cL-SSP and cL-HIST are the large-event cluster power cutoffs for the SSP5-8.5 and historical simulations re-
spectively. A similar expression follows for the cluster area conditional RR. Equation 3 holds provided that the 
power law slope 𝐴𝐴 𝐴𝐴 is unchanged between historical and SSP5-8.5 cluster pdfs, which is true for the models analyz-
ed here (Text S1). This expression predicts an exponential increase in conditional RR when 𝐴𝐴 𝐴𝐴L-SSP > 𝑐𝑐L-HIST . Us-
ing the linear fit estimates for aL and cL from Figures 1c and 1d, and the expression in Equation 3, an estimate for 
the conditional RR is computed. This estimate is overlaid on the directly computed conditional RRs in Figures 3c 
and 3d. These quantities are displayed on log-linear axes to present exponential changes as straight lines. It is 
seen that for most models, Equation 3 is a reasonably good estimator of the large-event conditional RR; although 
departures are also seen, most notably for IPSL-CM6A-LR. One reason for these departures could be deviations 
in the functional form of the pdfs from Equation 1. Overall, Figure 3 highlights that under global warming, the 
frequencies of precipitating systems with large size as well as those with large cumulative precipitation increase 
disproportionately when compared to small and medium events.

4.  Spatial Distribution of Large-Event Clusters
We now examine how the projected increase in the frequency of heavily precipitating systems manifests in space. 
First, the 99.9th percentile cluster power (c99.9) is estimated for both TRMM 3B42 and CMIP6 data. The c99.9 
value for CMIP6 models is computed using each model's historical run only. Compared to CMIP6 models, 
TRMM 3B42 has a finer horizontal resolution, and consequently, a greater proportion of clusters with small 
power values (Figure 1b), which impacts the percentile computation. To minimize these impacts and to provide 
a more direct comparison to the models, cluster power percentiles are recalculated omitting values smaller than 5 

𝐴𝐴 × 103 GW from the TRMM 3B42 analysis. This procedure quantitatively alters the TRMM 3B42 c99.9 value but 
does not qualitatively impact the results. The computed c99.9 values are large in absolute terms: about (2.5 ± 0.8) 

𝐴𝐴 × 106 GW in the CMIP6 historical ensemble and 1.𝐴𝐴 8× 106 GW in TRMM 3B42. Next, a cluster centroid or the 
precipitation weighted center-of-mass (xCOM) is computed for each cluster using:

𝐱𝐱COM =

∑
𝑖𝑖
𝐱𝐱𝑖𝑖p𝑖𝑖

∑
𝑖𝑖
𝐱𝐱𝑖𝑖

,� (4)

where xi denotes the latitude and longitude coordinates for each grid cell within a cluster, and pi is the precipita-
tion of that grid cell. The tropical region is then divided into coarse 10° latitude × 20° longitude grid boxes, and 
every cluster is assigned to one of these boxes based on its xCOM value. The number of clusters in each grid box 
with power exceeding c99.9 is then computed and normalized by the time period of sampling in years. This yields 
a metric n99.9 for extreme precipitation clusters with units of cluster counts/year.

Figure 4a displays the spatial distribution of n99.9 for TRMM 3B42. It is seen that the clusters with large power 
are predominantly situated over the Indian and western Pacific Oceans, with the very largest counts over South-
east Asia. Interestingly, other climatologically precipitating zones such as the central and east Pacific conver-
gence zones and the Congo Basin all show comparatively fewer precipitation clusters with large power. Figure 4b 
shows the multi-model mean of n99.9 from CMIP6 historical simulations. The observed spatial pattern of n99.9 
is qualitatively reproduced by the CMIP6 multi-model mean. This skill is particularly noteworthy given the ab-
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sence of high-resolution convective dynamics in CMIP6 models. This skill also increases confidence in the model 
ability to project future changes in the incidence of precipitation clusters with large power.

For each model, and for each coarsened grid box, the difference between the n99.9 values in the SSP5-8.5 and 
historical simulations (termed 𝐴𝐴 𝐴𝐴n99.9) is computed. The result is a spatial pattern of change under global warming 
of the cluster counts with large power. The multi-model mean of 𝐴𝐴 𝐴𝐴n99.9 is displayed in Figure 4c. This figure 
shows that CMIP6 models project significant increases in the number of clusters with large power over the Indian 
subcontinent and the western Pacific Ocean. This overlaps with regions already exhibiting the greatest incidence 
of clusters with large power in current climate (Figures 4a and 4b), exemplifying a form of the rich-get-richer 
phenomenon (Chou & Neelin, 2004; Tan et al., 2015; Trenberth, 2011). Other regional hot-spots for extreme 
cluster count increases include the central and eastern Pacific Inter-tropical convergence zone (ITCZ), and parts 
of South America. The projected changes over the Atlantic ITCZ and the Congo Basin appear more muted when 
compared to the other climatologically precipitating zones.

An explanatory model for the multi-model pattern of 𝐴𝐴 𝐴𝐴n99.9 is constructed using the CC relationship. For each 
model, the tropics-mean surface temperature is used to scale the cluster power from historical simulations and 
provide an n99.9 prediction for the SSP5-8.5 runs. For a model with 𝐴𝐴 𝐴𝐴T change in the tropics-mean surface temper-
ature under warming, the cluster power for every historical model cluster is scaled by 𝐴𝐴 1 + 𝛿𝛿T × 0.07 —the same as 
CC-Case 1 in Section 2. The change in the number of clusters exceeding each model historical run's c99.9 value is 
then computed. The multi-model mean of this quantity is displayed in Figure 4d. It is seen that the broad regional 
pattern of cluster power increase—over the Indian subcontinent, the western Pacific and part of South America—
as well as the lack of strong enhancement over the Atlantic ITCZ and the Congo Basin from Figure 4c is present in 
the CC approximation (Figure 4d). Some regional changes in 𝐴𝐴 𝐴𝐴n99.9 are not captured by the CC-prediction, such 
as the increases over the central and eastern Pacific ITCZ. Nevertheless, the CC-prediction offers a leading order 
explanation for the pattern of global warming induced changes in precipitating systems with large cluster power.

5.  Discussion and Conclusions
Statistics of tropical precipitation clusters (contiguous precipitating regions) are examined using TRMM obser-
vations and CMIP6 models. The probability distributions of cluster size and power (cumulative precipitation) 
from most model historical simulations agree with TRMM observations in terms of shape (power law range 

Figure 4.  The (a) TRMM 3B42 and (b) CMIP6 multi-model mean values of n99.9 (units of counts/year of large clusters; see text, Section 4). (c) The multi-model 
mean and (d) CC-predicted changes in n99.9 between SSP5-8.5 and historical scenarios.
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with large-event cutoff). However, quantitative differences exist in the large-event cutoff values. Under global 
warming (specifically the SSP5-8.5 scenario at the end of the twenty-first century), every model analyzed shows 
increases in the large-event cutoff values. The fractional change in probability density of the clusters above the 
cutoff increases approximately exponentially with cluster size and power. This implies a disproportionate change 
in the incidence of precipitation clusters with large size as well as clusters with large power values. This is true of 
all models, although the rate of exponential increase is subject to differences, and is governed by the magnitude 
of change in the cutoff value.

Cluster centroids (precipitation weighted center-of-mass) help identify the dominant spatial pattern of large-event 
clusters in observations. In the current climate, the Indian and western Pacific oceans tend to host the highest 
number of precipitation clusters with large power. This pattern is qualitatively reproduced by the CMIP6 mul-
ti-model mean. The CMIP6 models are used to project the spatial pattern of increase in the frequency of clusters 
with large power values. Climatologically precipitating tropical regions tend to see the largest increases. These 
regions include the Indian subcontinent, the western Pacific Ocean, the central and east Pacific ITCZs, and parts 
of South America. These regional hotspots are explainable to a great degree by a CC scaling of the current climate 
cluster distributions.

The CMIP6 models lack the physics to simulate details of intense precipitation events. A few models trade size 
for precipitation intensity and generate precipitation clusters that do not texturally correspond to observed storm 
systems (Figure S4 in Supporting Information S1). This issue is particularly egregious for models with much larg-
er aL values than observed (Figure S3 in Supporting Information S1), and is likely a consequence of the drizzle 
problem in climate models (Dai, 2006; Hagos et al., 2021). The model precipitation clusters must therefore be 
interpreted as being analogous to—but not in one-to-one correspondence with—observed precipitation clusters. 
Despite these shortcomings, the models are still in agreement that the incidence of heavily precipitating systems 
is projected to increase under global warming. Future work should confirm these results using higher-resolution 
models with realistic convective physics. The projected increases in large values of cluster-integrated rainfall 
could be particularly consequential for vulnerable coastal societies in the Indian subcontinent and western Pacific 
islands (e.g., Dasgupta et al., 2009; Karim & Mimura, 2008; Nurse et al., 2014.)

Data Availability Statement
The TRMM 3B42 data used here can be accessed from https://doi.org/10.5067/TRMM/TMPA/3H/7. The CMIP6 
model data used can be obtained from https://esgf-node.llnl.gov/projects/esgf-llnl/. More details about the mod-
els can be found in Table S1 in Supporting Information S1.
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